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Motivation

* Hardware typically only supports one specific two-qubit operation
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* What if every two-qubit operation was implemented natively in a
single pulse sequence?

* But we don't want to optimize pulses at runtime



Background: the Weyl chamber
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Previous work: neural networks

* |dea: train neural network to output pulse for given gate parameters
 Downside: not very flexible
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Can we find a way to do this while leveraging
guantum optimal control techniques?

* Many techniques for quantum optimal control have been developed
for different scenarios and purposes (open loop, closed loop, RL,
trajectory optimization, ...)

* Neural network-based methods miss out on all these optimizations

* Can we obtain similar results while retaining the benefits of advanced
pulse optimization techniques?



|dea: specifically design pulses for
interpolation
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Example: all two-qubit gates

Initial pulse seeding

SWAP
o 3-parameter
space of all 2-
VSWAP o | ISWAP qubit gates

Identify reference points in
parameter space

Optimize control pulses for
each reference point
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Reference pulse
re-optimization

Create simplicial mesh
Re-optimize reference
pulses based on neighbors
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Interpolation on
calibrated landscape

Infidelity

Use linear interpolation to
obtain pulses for any point
in the continuous gate set



Details: re-optimization and interpolation

. Neighbor-average Interpolation
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Example: simple two-qubit Hamiltonian
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Re-optimization makes pulses for nearby
reference points look similar

Initial independent optimizations After three rounds of re-optimization
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Re-optimization improves interpolations

Initial independent optimizations After three rounds of re-optimization

Interpolation infidelities Interpolation infidelities
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Calibration time vs. performance

* Tradeoff between interpolation quality and classical computation
time
* Each round of re-optimization adds classical computation cost

* Number of reference points adds computation cost



Computational cost of
neighbor-average re-optimization
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Comparison to neural network approaches

 Previous work!?: neural network for gate-family pulse generation
* Input: parameters of gate; time t
e Output: Control pulse values at time t

* For the same gate family, we use 2x less computation (or better) for a
lower average pulse infidelity

* We have additional benefits of explainability and modularity

[1] Sauvage and Mintert, "Optimal Control of Families of Quantum Gates," PRL 129, 050507 (2022)

[2] Preti, Calarco, and Motzoi, "Continuous Quantum Gate Sets and Pulse-Class Meta-Optimization,’
PRX Quantum 3, 040311 (2022)



Modularity: pulse optimizer

* Any pulse optimization method can be used in this framework; just
need Tikhonov regularization in cost function

» Offline, model-based optimization may not be enough on noisy
devices

* Data-driven optimization can solve device-model mismatch



Modularity & extensions

* Linear interpolation method is likely not the best choice
* Reference point distribution can be changed

* Neighbor-average re-optimization method can be changed
* Selective re-optimization

* Pulse parameterization can be changed to add robustness or account
for device constraints

 Extension: is recalibration under device drift more efficient?

* Maybe a smaller subset of Weyl chamber is enough for significant
performance improvements on most circuits



Summary

* We provide a method to calibrate a small number of control pulses
for high-quality interpolation

e After an initial calibration, our method instantly generates high-
fidelity control pulses for arbitrary gates in the chosen continuous set

* We improve on previous neural network methods by reducing
computation time and improving explainability

* The method is modular - can use advanced optimizers or make other
tweaks to method



Extension idea: parameterized Hamiltonian
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Extension idea: parameterized Hamiltonian

* Goal: perform a good CNOT operation for any specific instance of the
more general Hamiltonian

* Proposed method:

* Generate pulse interpolation landscape for parameterized Hamiltonian
(using similar methods to those described here)

* Characterize qubit(s) of interest

* Instantly obtain a good pulse for that specific Hamiltonian (if device-model
agreement is good)

* Changes the focus from optimization to characterization
 Allows for more complex/expensive pulse optimizations

 Same interpolation can work on any qubit in the device



	Slide 1: Efficient control pulses for continuous quantum gate families through coordinated re-optimization
	Slide 2: Motivation
	Slide 3: Background: the Weyl chamber
	Slide 4: Previous work: neural networks
	Slide 5: Can we find a way to do this while leveraging quantum optimal control techniques?
	Slide 6: Idea: specifically design pulses for interpolation
	Slide 7: Example: all two-qubit gates
	Slide 8: Details: re-optimization and interpolation
	Slide 9: Example: simple two-qubit Hamiltonian
	Slide 10: Re-optimization makes pulses for nearby reference points look similar
	Slide 11: Re-optimization improves interpolations
	Slide 12: Calibration time vs. performance
	Slide 13
	Slide 14: Comparison to neural network approaches
	Slide 15: Modularity: pulse optimizer
	Slide 16: Modularity & extensions
	Slide 17: Summary
	Slide 18: Extension idea: parameterized Hamiltonian
	Slide 19: Extension idea: parameterized Hamiltonian

