Jason D. Chadwick

jchadwick@uchicago.edu jason-chadwick.com

Education

Ph.D. Candidate, Computer Science, University of Chicago

Studying quantum computer systems and architecture, advised by Fred Chong.

I am primarily interested in low-level software optimizations that narrow the gap between existing hardware and the future goal of large-scale fault-tolerant quantum computation. I have worked on research in the areas of error correction decoding, mitigating burst errors, control pulse engineering, device calibration, circuit compilation, and high-radix computation.

B.S. Physics, Carnegie Mellon University

Minor in Computer Science GPA 3.95

Professional Experience

Quantum Computing Intern, Intel

Quantum computer architecture research projects, with a focus on enabling near-term QEC on Intel hardware.

Quantum Computing Intern, Intel

Discovered new pulse schedules for two-qubit operations in silicon spin qubits, yielding up to 54% reduction in errors and spurring the development of novel chip designs to take advantage of these gains. Incorporated this work into existing Python hardware interface and C++ compiler stack. Created compilation and simulation software for hardware-informed exploration of the QEC code design space, providing guidance for Intel's quantum roadmap. Currently preparing a first-author manuscript for publication.

Undergraduate Researcher, University of Chicago

Spring 2021–Summer 2022 Optimized short-duration control pulses for high-radix quantum logic gates, motivating a new compiler design that takes advantage of mixed-radix operations. Research was presented at QCE 2022 and was a key part of papers at ASPLOS 2023 and ISCA 2023.

Undergraduate Intern, Princeton Plasma Physics Laboratory

As part of the Department of Energy SULI program, designed a neural network to predict fusion plasma crosssectional density and pressure using only data available in real time during plasma operation, for use in real-time feedback control systems. Work published in Nuclear Fusion.

Programming

Languages:	Python, Julia, C/C++
Python libraries:	Stim/sinter, qiskit, Cirq, QuTiP
Software:	HPC/slurm

Awards and Honors

QSYS Best Paper 1st place, IEEE QCE 2024	2024
QTEM Best Paper 3rd place, IEEE QCE 2023	2023
Crerar Fellowship , University of Chicago University Honors , Carnegie Mellon University	2022 2022
College Honors, Mellon College of Science, Carnegie Mellon University	2022
Dean's List, High Honors, Mellon College of Science, Carnegie Mellon University	2018-2022

Service

Last updated April 10, 2025

Spring 2025-present

Summer 2024

Summer 2020

2018-2022

2022-present

Teaching Assistant, CMSC 22200 Computer Architecture

Developed autograder and taught lab sessions.

Workshop organizer, QCE 2024

Organized second edition of "Novel Applications of Optimal Control and Calibration for Quantum Technology" at QCE 2024, featuring invited talks and guided discussions.

Workshop organizer, QCE 2023

Organized a day-long workshop "Advances in Numerical Quantum Optimal Control and Characterization Methods" at QCE 2023, featuring invited talks and guided discussions.

Physics Steering Committee, CMU Physics Department

Collaborated with physics department leadership to guide programs and policy.

Publications

[†] indicates equal contribution

Year	Title and Authors	Publisher	Category
2025	Operating two exchange-only qubits in parallel M. T. Mądzik, F. Luthi, G. G. Guerreschi, F. A. Mohiyaddin, F. Borjans, J. D. Chadwick, M. J. Curry, J. Ziegler, S. Atanasov, P. L. Bavdaz, E. J. Connors, J. Corrigan, H. Ek- mel Ercan, R. Flory, H. C. George, B. Harpt, E. Henry, M. M. Islam, N. Khammassi, D. Keith, L. F. Lampert, T. M. Mlade- nov, R. W. Morris, A. Nethwewala, S. Neyens, R. Otten, L. P. O. Ibarra, B. Patra, R. Pillarisetty, S. Premaratne, M. Ram- sey, A. Risinger, J. Rooney, R. Savytskyy, T. F. Watson, O. K. Zietz, A. Y. Matsuura, S. Pellerano, N. C. Bishop, J. Roberts, and J. S. Clarke arxiv.org/abs/2504.01191	Under review	Journal article
2025	 Short two-qubit pulse sequences for exchange-only spin qubits in 2D J. D. Chadwick, G. G. Guerreschi, F. Luthi, M. T. Mądzik, F. A. Mohiyaddin, P. Prabhu, A. T. Schmitz, A. Litteken, S. Premaratne, and N. Bishop arxiv.org/abs/2412.14918 	<i>Physical Review A</i> (to appear)	Journal article
2025	SWIPER: Minimizing Fault-Tolerant Quantum Program La- tency via Speculative Window Decoding J. Viszai [†] , J. D. Chadwick [†] , S. Joshi, G. S. Ravi, Y. Li, and F. T. Chong arxiv.org/abs/2412.05115	52nd International Symposium on Computer Architecture (ISCA) (to appear)	Refereed conference paper
2024	Averting multi-qubit burst errors in surface code magic state factories J. D. Chadwick, C. Kang, J. Viszlai, S. F. Lin, and F. T. Chong arxiv.org/abs/2405.00146 QSYS Best Paper 1st place	2024 IEEE International Confer- ence on Quantum Computing and Engineering (QCE)	Refereed conference paper
2023	Efficient control pulses for continuous quantum gate fam- ilies through coordinated re-optimization J. D. Chadwick and F. T. Chong doi.org/10.1109/QCE57702.2023.00145 QTEM Best Paper 3rd place	2023 IEEE International Confer- ence on Quantum Computing and Engineering (QCE)	Refereed conference paper

September 2023

September 2024

2019-2021

2023	Dancing the Quantum Waltz: Compiling Three-Qubit Gates on Four Level Architectures A. Litteken, L. M. Seifert, J. D. Chadwick , N. Nottingham, J. M. Baker, and F. T. Chong doi.org/10.1145/3579371.3589106	50th International Symposium on Computer Architecture (ISCA)	Refereed conference paper
2023	Qompress: Efficient Compilation for Ququarts Exploiting Partial and Mixed Radix Operations for Communication Reduction A. Litteken, L. M. Seifert, J. D. Chadwick , N. Nottingham, J. M. Baker, and F. T. Chong doi.org/10.1145/3575693.3575726	28th ACM International Confer- ence on Architectural Support for Programming Languages and Operating Systems (ASPLOS)	Refereed conference paper
2022	Time-Efficient Qudit Gates through Incremental Pulse Re- seeding L. M. Seifert [†] , J. D. Chadwick [†] , A. Litteken, F. T. Chong, and J. M. Baker doi.org/10.1109/QCE53715.2022.00051	2022 IEEE International Confer- ence on Quantum Computing and Engineering (QCE)	Refereed conference paper
2021	Prediction of electron density and pressure profile shapes on NSTX-U using neural networks M. D. Boyer and J. D. Chadwick	Nuclear Fusion 61 046024	Journal article

doi.org/10.1088/1741-4326/abe08b

Talks

Year 2025	Title Short two-qubit pulse sequences for exchange-only spin qubits in 2D	Venue APS March Meeting 2025	Category Conference talk
2024	Averting multi-qubit burst errors in surface code magic state factories	2024 IEEE International Confer- ence on Quantum Computing and Engineering (QCE)	Conference paper talk
2024	Dynamic mitigation of time-varying noise in surface code magic state factories	APS March Meeting 2024	Conference talk
2023	Efficient control pulses for continuous quantum gate fam- ilies through coordinated re-optimization	2023 IEEE International Confer- ence on Quantum Computing and Engineering (QCE)	Conference paper talk

Patents

Year	Title	Description
2023	SYSTEMS AND METHODS FOR OPTIMIZED PULSES FOR CONTINUOUS QUANTUM GATE FAMILIES THROUGH PARAMETER SPACE INTERPOLATION	Methods related to those described in "Ef- ficient control pulses for continuous quan- tum gate families through coordinated re- optimization", <i>QCE 2023</i> .