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Background: magic state distillation
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Real devices are highly unpredictable
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Insight: syndrome bits tell us which input

states are faulty

* Each unique input logical T error
triggers a unique set of syndrome
bits

e Estimation method:

* Observe syndrome bits over some
window

* Find assignment of input T infidelities
that best explains observed syndrome
bit distribution

* Calculate estimated output infidelity

* 2tunable parameters: window size
and recalibration threshold
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Designing an expressive noise model

Physical T state preparation fidelities on ibm_cairo
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Physical T state preparation fidelities on ibm_cairo
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a) Simulated IBM-like physical noise model, Simulated IBM-like physical noise model, C) Example simulated patch-level error rates
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Noise models
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Triggering recalibrations from estimations
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Verifying program performance

* We can calculate the
mean estimated infidelity
over all windows in the
program

* Useful to build confidence
in a program result after
completion

Mean estimated output error rate

Estimating mean program error
1e-9 under time-dependent noise

Raw mean estimated error
Corrected estimations @
—-——Perfect prediction (est = true)

2 3 4 5 6 7
True mean output error rate

1e-9



Conclusion

* We have developed a minimal-overhead method to estimate the fidelity of
distilled T states

* Over a wide range of noise models, our estimator can be used to trigger
targeted recalibrations to maintain T fidelity guarantees

* On a program level, we can estimate the overall mean T fidelity to verify
program correctness

Thanks!



