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Overview
● Control systems for fusion reactors would greatly benefit from real-time 

density and pressure profile data during operation
○ These profiles cannot be measured directly
○ Existing code (TRANSP) can produce these profiles but is far too slow to do in real time

● A much faster alternative: machine learning! Neural networks can 
produce these profiles in real time with high accuracy
○ Approach has previously been applied to NSTX-U by M. Boyer, but NSTX has a much 

larger dataset with a wider range of experimental conditions

● Goals: determine optimal model parameters, analyze performance, 
develop measures of prediction uncertainty
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Time history of scalars
● Low-pass filter with a selection of time 

constants applied to input scalars
○ Instantaneous and filtered values are then all 

passed as inputs to net

● Gives the network a simple measure of 
the time history of each scalar

● Filter described by

 

○ x are filtered values, u are instantaneous scalar 
values, 𝜏 is the filter time constant
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Inputs, outputs, and model topology
● 7 scalar inputs are each 

low-pass filtered 3 times
○ Total of 30 scalar inputs to the 

model

● 4 fully connected layers of 
100 nodes each

● 3-model ensemble
○ 3 models trained on overlapping 

subsets of training data
○ Final prediction = average 

prediction of the 3 models
○ Standard deviation can be used 

as a measure of uncertainty
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Dataset and preprocessing
● Dataset: NSTX TRANSP A01 runs from 

2004-2011
● 1837 shots in total
● Total of ~995,000 time slices
● 49 data points per slice

○ 9 scalars, measured in real time
○ 2 profiles of 20 radial points each, calculated 

by TRANSP after the shot is over

● To reduce dimensionality, used principal 
component analysis (PCA) to project 
profile data onto a reduced number of 
modes (6) before training
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Keep first 6 modes 
(explains ~99.7% of variance in data)



Profile example

6

● Left: profile at two different times in shot. Right: Three fixed radial points 
tracked throughout the whole shot

● Shaded area is one ensemble standard deviation

Bad predictions 
at disruption

0.240s
0.240s

Good prediction at earlier t, 
not as good at later t. R2 = 0.87



Network architecture choice
● To determine ideal architecture, train 

many with different parameters and 
test on the same dataset
○ Each model had n layers of m nodes each

● Diminishing returns after ~30,000 
parameters
○ Parameter = total num. of nodes and weights
○ Too many parameters → long runtime

● Selected architecture consisting of 4 
layers of 100 nodes each (35,854 
parameters) to balance accuracy and 
complexity

Chosen model
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Training set size
● Trained on increasing subsets of 

training data and tested on full 
test set

● Results: Continually improves 
with more data, as expected
○ More data is always good, but can get 

reasonable results without all of it

● Pressure R2 values are regularly 
higher than density
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Results: regression plots

● Comparison between actual and predicted values for each radial 
measurement of each profile in testing set
○ Good predictions overall, with a small number of outliers
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Results: R2 values by time slice
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● Plots: R2 for each slice in 
testing set, on linear and 
logarithmic scales

● Vast majority of time 
slices are well predicted

● Can detect some poor 
predictions with 
measures of uncertainty

● Need to investigate 
source of very low 
(R2 < 0.2) predictions



Results: predictions by sample time

● Early times seem to be the hardest to predict
○ note: not all shots ended at the same time

● Need to investigate early predictions of pressure
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Next-shot predictions 
outside of training space
● More realistic test: predict each 

shot based only on previous data
○ Weight most recent 250 shots 3x to 

account for long-term changes in 
physical design of reactor or in 
experimental goals of shots

● Results: Good average 
predictions throughout dataset
○ Accuracy improves quickly at the 

start
○ Density predictions less reliable than 

pressure

12



Predicting inaccuracies
● Goal: predict R2 value based on inputs and profile predictions

○ Purpose: detect poor predictions before they would be used in a control system

● Used a second neural network, trained on the R2 values of the main net
○ Inputs: original input scalars (9 scalars), predicted profile PCA components
○ Outputs: model prediction R2 values (for density and pressure)
○ Training data: 90% of test set results (~85k time slices)
○ Test data: remaining 10% (~9.5k time slices)

● Looked at how often the model will
correctly predict that an R2 value
is lower than a threshold
(e.g. R2 < 0.80)
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Predicting inaccuracies: results            Threshold: R2 ≤ 0.80

● Results: good, but can be improved
○ False positive and false negative rates are relatively good but not perfect

● Combining this technique with ensemble uncertainty (and possibly other 
measures of uncertainty in the future) has potential to greatly increase 
reliability of main neural network

R2 
category

Total expected 
below 
threshold

Total predicted 
below 
threshold

Num. 
overlapping

Num. false 
positives

False 
positive 
rate

Num. false 
negatives

False 
negative 
rate

ne 1690 2478 1495 983 0.11 195 0.12

neTe 309 484 279 205 0.02 30 0.10
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Conclusions
● A neural network is capable of reliably reproducing TRANSP profile 

predictions for most shots in the dataset with high accuracy
○ Promising for control system applications

● Approach was effective on both NSTX and NSTX-U
○ Promising for use with other reactors as well

● Model predicts electron pressure well, but we still need to improve 
density predictions

● Most poor predictions are at early times in each shot
● Model is capable of predicting future shots that are not in the training 

space
● We have reasonable measures of model confidence
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Future work
● Develop improved estimation of volume-averaged electron density and 

pressure
○ Possibly a secondary neural network

● Attempt to further improve density prediction
○ Determine effect of different filtering 𝜏 values on beginning-of-shot prediction
○ Potentially need new measured quantities - could help guide future reactor design

● Improve measures of model confidence
○ Improve prediction of R2 values
○ Try Monte Carlo dropout for uncertainty
○ Find ways to rigorously define the training set parameter space, so we can know when we 

are outside of it

● Test technique on other machines (DIII-D etc.)
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