Efficient control pulses for continuous quantum gate families
through coordinated re-optimization
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Introduction Initial independent optimizations After three rounds of re-optimization

The ability to natively perform any arbitrary operation with high fidelity 100 Results
could significantly improve the capabilities of near-term quantum computers, SWAPD | SWAPD  High interpolation fidelity throughout Weyl chamber (left fig.)
avoiding the runtime and fidelity costs associated with decomposing into | 10-1 « ~2x more computationally efficient than existing neural network
basis operations. However, pulse optimizations are computationally approach
expensive. We address this problem by describing a procedure to calibrate a s » Tradeoff between average infidelity and classical computation time (see
pulse landscape for a continuous family of operations, from which control 10 % below image)
pulses for arbitrary operations can be instantly retrieved. 2
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1. Choose reference points that cover parameter space. %10_3__ . \ “ + 0 \+ L N
2. Solve optimal control problem for each reference point to obtain _ 2 _ | . | g) haee n
reference pulses. H(t) — xax (t)ag)ag) -+ Z qu (t)ag(j?) —+ JQ; (t)gg) (5) < T ‘: _________
3. Perform neighbor-average re-optimization to update control pulses at =1 074 . .
each reference point:
a. Generate simplicial mesh in parameter space, with reference points as 10-5 | | | | . .
vertices. Initial independent optimizations After three rounds of re-optimization 0 1000 2000 3000 4000 5000 6000 7000
b. Calculate neighbor-average pulse (Eq. 3) for each point. Cumulative number of Iterations
c. Calculate Tikhonov penalty for each reference point. 1- 1-
d. Sort reference points Ipy Tikhonov penaIFy, descending. N _
e. For each reference point, recalculate neighbor-average pulse and re- _ > -
optimize control pulse to be similar (Eg. 1+2). = — ] Extensions to existing framework
f. Repeat as needed. [ - » Nonuniform reference point distribution
4. Obtain a pulse for any other point by interpolation: 0- 0- - . Selective re-optimization to improve efficiency
a. Generate simplicial mesh. — + Extending to work with parameterized Hamiltonians for robustness
b. Identify parameter point for desired operation and find the containing 4 N | . Higher-order interpolation functions
simplex. Q | ~ OxOxpulseatpointA » Combined optimization of all reference points at once
c. Calculate barycentric coordinates with respect to vertices. 'g 1 ) B/ — c|7xax pulse a_tﬂOInt B . Experimental testing on hardware
d. Use generalized linear interpolation (Eg. 4) to obtain interpolated = N T 0 2 T
pulse vector. CEL /: Future research directions
O - | * Is recalibration (e.g. for parameter drift) of a family of control pulses
Neighbgr-average Interpolation g 1 _\ o - 1 { —— easier than initial calibration?
re-optimization a:_) —— oW pulseat pointA » How can continuous gate sets help guantum error correction?
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