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Introduction

The ability to natively perform any arbitrary operation with high fidelity 
could significantly improve the capabilities of near-term quantum computers, 
avoiding the runtime and fidelity costs associated with decomposing into 
basis operations. However, pulse optimizations are computationally 
expensive. We address this problem by describing a procedure to calibrate a 
pulse landscape for a continuous family of operations, from which control 
pulses for arbitrary operations can be instantly retrieved.

Discussion

Result�
� High interpolation fidelity throughout Weyl chamber (left fig.�
� ~2x more computationally efficient than existing neural network 

approac�
� Tradeoff between average infidelity and classical computation time (see 

below image)



Benefit: modularit�
� Reference point distribution can be changed to variable point density in 

different regions of parameter spac�
� Pulse parameterization can be change�
� Pulse optimization algorithm can be replaced with a closed-loop, data-

informed tune-up procedure to improve experimental fidelit�
� Re-optimization method and interpolation method can be tailored to 

specific Hamiltonian and gate family

Future work

Extensions to existing framewor�
� Nonuniform reference point distributio�
� Selective re-optimization to improve efficienc�
� Extending to work with parameterized Hamiltonians for robustnes�
� Higher-order interpolation function�
� Combined optimization of all reference points at onc�
� Experimental testing on hardware



Future research direction�
� Is recalibration (e.g. for parameter drift) of a family of control pulses 

easier than initial calibration�
� How can continuous gate sets help quantum error correction?
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Methods

�� Choose reference points that cover parameter space�
�� Solve optimal control problem for each reference point to obtain 

reference pulses�
�� Perform neighbor-average re-optimization to update control pulses at 

each reference point�
�� Generate simplicial mesh in parameter space, with reference points as 

vertices�
�� Calculate neighbor-average pulse (Eq. 3) for each point�
�� Calculate Tikhonov penalty for each reference point�
�� Sort reference points by Tikhonov penalty, descending�
�� For each reference point, recalculate neighbor-average pulse and re-

optimize control pulse to be similar (Eq. 1+2)�
�� Repeat as needed�

�� Obtain a pulse for any other point by interpolation�
�� Generate simplicial mesh�
�� Identify parameter point for desired operation and find the containing 

simplex�
�� Calculate barycentric coordinates with respect to vertices�
�� Use generalized linear interpolation (Eq. 4) to obtain interpolated 

pulse vector.
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