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Abstract—We present a general method to quickly generate
high-fidelity control pulses for any continuously-parameterized
set of quantum gates after calibrating a small number of refer-
ence pulses. We find that interpolating between optimized control
pulses for different quantum operations does not immediately
yield a high-fidelity intermediate operation. To solve this problem,
we propose a method to optimize control pulses specifically to
provide good interpolations. We pick several reference operations
in the gate family of interest and optimize pulses that implement
these operations, then iteratively re-optimize the pulses to guide
their shapes to be similar for operations that are closely related.
Once this set of reference pulses is calibrated, we can use a
straightforward linear interpolation method to instantly obtain
high-fidelity pulses for arbitrary gates in the continuous operation
space.

We demonstrate this procedure on the three-parameter Cartan
decomposition of two-qubit gates to obtain control pulses for
any arbitrary two-qubit gate (up to single-qubit operations) with
consistently high fidelity. Compared to previous neural network
approaches, the method is 7.7x more computationally efficient
to calibrate the pulse space for the set of all single-qubit gates.
Our technique generalizes to any number of gate parameters and
could easily be used with advanced pulse optimization algorithms
to allow for better translation from simulation to experiment.

I. INTRODUCTION

Quantum circuits, consisting of logical operations on qubits,
are typically decomposed into a set of elementary basis
operations that are specific to a given hardware device. These
basis operations can be individually calibrated through control
pulse shaping to achieve high accuracy. However, the space of
all quantum operations is much larger than just the hardware
basis set, meaning that operations must typically be decom-
posed into a sequence of basis operations. The capability to
perform any operation within a continuous gate set could
significantly improve the capabilities of near-term quantum
computers, avoiding the runtime and fidelity costs associated
with decomposing into basis operations.

Continuous gate sets have been shown to improve fidelity
and reduce gate count of quantum circuits [1]–[3]. The imple-
mentation of continuous gate sets has been studied on various
hardware platforms such as trapped ions [4], [5] and various
superconducting platforms [2], [3], [6], [7]. However, each of
these studies focused on implementing a specific continuous
gate. In this work, we provide a hardware-agnostic method to
calibrate any arbitrary continuous gate set. Our approach uses
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Fig. 1. a) We seek to efficiently generate high-fidelity control pulses for
continuous families of quantum gates. Here, we envision some continuous set
of unitary operations between the CNOT and

√
SWAP operations. The

goal is to efficiently obtain control pulses for any arbitrary point in this one-
dimensional space of operations while only explicitly calibrating pulses at
the two endpoints. b) Top: Consider some high-fidelity control pulses that
implement CNOT and

√
SWAP (blue and red). We attempt to obtain

a pulse for an intermediate operation (green) through linear interpolation.
We find that interpolation yields poor results when the fixed pulses have
very different shapes. Bottom: However, if we can re-optimize the pulses
for CNOT and

√
SWAP to be more similar to each other (while still

performing the correct operations), our simple linear interpolation method
can obtain a high-fidelity pulse for the intermediate operation. Our methods
generalize to higher-dimensional parameter spaces.

a quantum optimal control solver as a subroutine, iteratively
optimizing control pulses to implement a few specific opera-
tions from within the gate set, from which we obtain pulses
for any other operation.

Quantum control optimization involves shaping hardware
control pulses to execute a target operation with high fidelity.
Many software packages have been designed to solve quantum
control problems for various systems and objectives such as
[8]–[16]. If the hardware device of interest is fully controllable,
any unitary quantum operation can be implemented using an
optimal control solver. Thus, a simple way to support arbitrary
continuous gate sets through optimal control is to optimize
pulses on an as-needed basis, depending on the operations en-
countered in the chosen circuit. However, pulse optimizations
are computationally expensive, making it infeasible to do this
when the input circuit is not necessarily known in advance
and long delays in execution time are undesirable.
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We address this problem by describing a procedure to
pre-calibrate a continuous pulse landscape for a family of
quantum operations, from which high-fidelity control pulses
for arbitrary operations can be instantly retrieved. We create
this landscape by picking a small number of specific operations
to directly optimize pulses for, re-optimizing these pulses to
be similar to one another, and then defining an interpolation
function to retrieve new pulses for any operation in between.

The idea of applying optimal control to continuous spaces
is not new. Reference [17] studied the problem of applying
a specific operation on a parameterized Hamiltonian to create
resilience to varying device errors. Reference [18] examines
the single-parameter case in the optimization of a cubic
interaction unitary, performing interpolation between two fixed
control pulses in a single-parameter space with consistently
high fidelity. Reference [19] introduces methods to generate
continuous sets of controls to create robustness to experimental
deviations in Hamiltonians.

Reference [20] (from which we borrow the term “gate
family”) demonstrates the effectiveness of a neural network
for generating control pulses for families of parameterized
gates. The network takes as inputs the parameters of a specific
gate and the time value t, and it outputs the control value(s)
f(t). The network is trained over many iterations consisting of
batches of randomly-sampled operations from the gate family.
Reference [21] uses a similar neural network method, but does
not provide detailed data for larger parameter spaces with
which to make an objective comparison, so we focus primarily
on comparisons with [20] in this work.

Figure 1a shows an example of the problem we solve. We
start with two reference operations, CNOT and

√
SWAP ,

with the goal of efficiently obtaining pulses for any in-
termediate through interpolation. Under the assumption that
sufficiently small changes in control pulse values will lead
to small changes in the realized quantum operation, linear
interpolation between control pulses should yield reasonable
results if the initial pulses are similar enough. However, in
general, the same quantum operation can be achieved with
many different physical pulse sequences; an optimal control
solver usually starts from random initial guesses, and, unless
heavily constrained, is not expected to reach the same final
pulse shape for different initial guesses. Two independently-
optimized pulse sequences for different quantum operations
could therefore have extremely different pulse shapes (even if
the operations themselves are quite similar), meaning that in-
terpolation will generally not provide good results, as observed
in the Supplemental Material of [20].

Figure 1b shows the key insight of this work: while opti-
mizing pulses for the two reference operations initially yields
poor interpolation accuracy, re-optimizing these pulses to be
more similar to each other constrains the pulse solution space
and provides significant improvements in average interpolation
fidelity. Once the reference pulses are optimized, interpolation
can instantly retrieve the pulse for any operation in the
parameter space.

In this work, we describe coordinated re-optimization, a

method to iteratively optimize reference pulses to be more
similar, which enables the use of interpolation to efficiently
generate controlpulses for continuously-parameterized quan-
tum operations. Our method can achieve equal or better
average infidelities as the neural network methods of [20]
and [21] using less computation. Additionally, any optimal
control algorithm can be used in this framework, allowing for
advanced techniques for robust or closed-loop pulse control
such as [14]–[16], [22], [23] to directly replace or augment the
optimal control unit in our method; these pulse optimization
algorithms could significantly improve the translation between
simulation and experiment.

We specifically present applications of our method to the set
of all single-qubit gates and to the set of parameterized two-
qubit gates that lie within the Weyl chamber, under the belief
that these classes of gates are the most important for enabling
near-term applications on quantum computers. However, our
method can be generalized to any parameterized gate family.

II. OPTIMIZING REFERENCE PULSES

We use the Boulder Opal optimization package [24], [25].
We describe a control pulse by its vector of optimizable
variables ~α. We use the objective function

J = 1− 1

h2

∣∣∣Tr
(
U†targetUT (~α)

)∣∣∣2︸ ︷︷ ︸
gate infidelity

+ λ̃

nf∑
k

‖~αk − ~α0,k‖22,︸ ︷︷ ︸
Tikhonov regularization

(1)

with Tikhonov weight

λ̃ =
λ

nf · np · α2
max

. (2)

Gate infidelity is calculated between the target unitary U†target
and the unitary UT (~α) implemented by the pulses. Two-qubit
gates have Hilbert space dimension h = 4. The Tikhonov
regularization term penalizes distance between nf optimizable
pulses, each with np optimization variables stored in the vector
~αk, and fixed target vector ~α0,k with user-specified weight
λ. It is common to include a similar regularization term in
the cost function with ~α0 = ~0 to encourage low-amplitude
control pulses, as in [26]. In this work, we found λ = 10−2

to yield satisfactory results, but this will likely require tuning
for different devices and gate families. Choice of ~α0 is key to
our method and is discussed in detail in Section II-B.

A. Initial optimization

The first step of our method is to parameterize the gate
family of interest and define the volume in parameter space
that contains all desired gates, as seen in Figure 2a. To
create the interpolation landscape, we first pick reference
points on a rectangular grid in this parameter space, where
the grid spacing is a tunable parameter that we refer to as
the granularity. For each point, we obtain the corresponding
quantum operation and then use the pulse optimizer to find a
valid control pulse sequence that implements this operation.
For this initial round of optimization, we choose Tikhonov
target ~α0 = ~0 in (1) to encourage low-amplitude pulses.
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Fig. 2. Overview of the example of our method provided in this work. More details on this specific example are provided in Section V. a) We use the
Cartan decomposition (6) to define a three-dimensional space that contains all two-qubit operations. Our goal is to efficiently generate pulses for any arbitrary
point within this continuous space. b) We choose several reference operations within the space and generate control pulses that implement these operations
via optimal control software. Interpolating between these reference pulses does not necessarily provide a high-quality pulse immediately. c) To solve this
problem, we iteratively re-optimize each reference pulse to be more similar to the average of nearby reference pulses, a process we call neighbor-average
re-optimization. This process is described in Section II. d) Once these reference pulses have been fully calibrated, we can instantly obtain control pulses for
any operation in the continuous family by performing linear interpolation between the nearest reference pulses. This process is described in more detail in
Section III.

As can be seen in the examples in later sections, this initial
pulse set does not always interpolate well in all parts of
parameter space. There is no guarantee that control pulses
for similar unitaries will themselves be similar, as observed
in [20]; there are often many distinct control sequences that
can realize the same unitary operation, yielding near-useless
interpolations in between different reference pulses. Tikhonov
regularization with ~α0 = ~0 helps by restricting the space
of allowed solutions, but does not fully resolve this issue.
This motivates a more intelligent approach to finding reference
pulses, which we call neighbor-average re-optimization.

B. Neighbor-average re-optimization

We generate a simplicial mesh across our reference points
using the scipy.spatial.Delaunay function [27]. A d-
simplex is the simplest d-dimensional polytope, formed by
the convex hull of d + 1 vertices. For example, a 2-simplex
is a trangle and a 3-simplex is a tetrahedron. For a set of
k ≥ d + 1 points in d dimensions, a simplicial mesh of
contiguous d-simplices can be generated to cover the space
between the points1. Each point is then the vertex of one or
more simplices in the mesh. An example of a 3-dimensional
simplicial (tetrahedral) mesh is shown in Figure 2c. From
this simplicial mesh, we can query the neighbors of a given
reference point, which are all other points that are connected
to the point of interest by an edge.

Starting with the initial naive reference pulses from the
initial optimization round, we generate a simplicial mesh over
the reference points. For each reference point pi, we find the
set of neighboring vertices η(pi) and calculate the neighbor-
average pulse vector

~̂αi =
1

|η(pi)|
∑

pj∈η(pi)

~αj , (3)

1Issues may arise in specific configurations of points. For example, if all
points are coplanar in a 3D space, no nonzero-volume tetrahedra can be
generated. However, in practice, we can reliably generate a simplicial mesh
for any reasonable set of points.

which is the average over the pulse variables ~αj of all
neighboring points pj . We then calculate the Tikhonov penalty
between the optimized pulse ~αi and the neighbor-average pulse
~̂αi. An example of a neighbor-average pulse calculation is
shown in Figure 2c.

For each point (ordered by highest neighbor-average
Tikhonov penalty), we recalculate ~̂αi and then use the optimal
control solver to re-optimize ~αi using cost function (1),
with initial guess and ~α0 both set to be ~̂αi. The Tikhonov
regularization term encourages the optimized pulse ~αi to be
as similar as possible to ~̂αi while still yielding low infidelity.

This tune-up procedure can be repeated multiple times,
with each round of re-optimization building upon the last and
steering the reference pulses to be increasingly similar to each
other.

III. INTERPOLATING BETWEEN REFERENCE PULSES

Once the reference points have been calibrated, to calculate
the linearly-interpolated control pulse for some new point p̃,
we construct a weighted sum of reference pulses ~αi at nearby
reference points {pi}. We first locate the point within one
of the simplices in the Delaunay mesh (the same mesh we
previously used in the calibration process). The interpolated
pulse vector is then a linear combination of the reference
pulses at the vertices of this simplex, weighted by barycentric
coordinates.

Barycentric coordinates are a group of d+ 1 numbers that
uniquely identify a point within a d-dimensional simplex,
each corresponding to one vertex of the simplex. Barycentric
coordinates are uniquely determined by the requirement that
the target point is equal to the coordinate-weighted sum of the
vertices,

p̃ =
∑
pi∈Sp̃

bipi, (4)

where bi is the barycentric coordinate of p̃ with respect to
vertex pi and Sp̃ is the set of vertices defining the simplex that
contains point p̃. The closer the point is to a given vertex, the



larger the corresponding coordinate will be 2. Each coordinate
is bounded by [0, 1] and the coordinates sum to 1.

Given these coordinates, our interpolated pulse vector is
determined by

~αp̃ =
∑
pi∈Sp̃

bi~αi (5)

where the vector ~αi is the optimized reference pulse at vertex
pi. This barycentric coordinate approach is the generalization
of linear interpolation to arbitrary dimension. An example of
this interpolation process in three dimensions is shown in
Figure 2d.

IV. STEPS OF GENERAL METHOD

In this section, we present our general approach to calibrate
a continuous set of quantum control pulses.

1) Setup. If using a model-based optimizer, obtain a model
of the device, such as a Hamiltonian. Choose a pulse
description ~α (a finite set of variables used to construct
each pulse) and a pulse optimization algorithm. De-
fine the parameters of the gate family and determine
the space to interpolate within. Sample a number of
parameter points {pi} from this space and obtain the
corresponding quantum operations.

2) Initial optimization. Use the optimizer to generate initial
reference pulses ~αi for each reference point.

3) Re-optimization. For each reference point pi:
a) Calculate new target pulse ~α0,i based on the set of

existing reference pulses.
b) Re-optimize the reference pulse ~αi with this target

pulse as the initial guess. Use Tikhonov regular-
ization in the pulse optimization cost function to
encourage the final pulse to be close to the target
pulse.

Repeat step 3 as needed.
4) Interpolation. Choose an interpolation function f :

(p̃, {pi, ~αi})→ ~αp̃ that calculates interpolated pulse ~αp̃
at parameter-space point p̃ given the set of optimized
reference points and pulses {pi, ~αi}.

V. EXAMPLE: THE WEYL CHAMBER OF TWO-QUBIT GATES

We demonstrate this re-optimization and interpolation
scheme for the three-parameter Cartan decomposition of two-
qubit gates. Any two-qubit quantum logic gate U ∈ SU(4)
can be written as

U = k1 exp

(
− iπ

2

∑
j=x,y,z

tjσ
(1)
j σ

(2)
j

)
k2 (6)

in terms of Pauli matrices σx, σy, σz and Cartan coordinates
tx, ty, tz [28]. The operations k1, k2 ∈ SU(2) ⊗ SU(2)

2If the point lies on a face of the simplex, the only nonzero barycentric
coordinates will be those corresponding to the vertices that define that face.
This property ensures that interpolations are consistent along face boundaries
of adjacent simplices. Along with the fact that barycentric coordinates vary
continuously within a simplex, this means that the interpolation space is
continuous throughout the simplicial mesh.
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Fig. 3. Comparison of pulse shapes for two adjacent reference points
before and after several rounds of re-optimization. Point A corresponds to
Cartan coordinates ( 1

2
, 0, 0) (the coordinates of CNOT and CZ) and point

B corresponds to coordinates ( 1
2
, 1
4
, 1
4
). Optimized controls for the two

operations (from the same results as shown in Figure 4) are shown for the
σxσx control (top) and σ(1)

z control (bottom) of the Hamiltonian (8). Inset:
locations of points A and B in the Weyl chamber. Left: the pulse shapes
are initially significantly different between points A and B. Right: the pulses
become far more similar after re-optimization, making interpolation easier, but
still retain certain differences in their shapes that account for the differences
in the resulting operations.

represent single-qubit gates acting on the qubits independently,
i.e. k1 = U0 ⊗ U1 for some single-qubit gates U0 and U1.
Distinct two-qubit gates are referred to as “locally equivalent”
or “equivalent up to single-qubit gates” if they have the same
Cartan coordinates.

The Weyl chamber is a volume in Cartan coordinate space
defined by the equations

0 ≤ tx ≤ 1

0 ≤ ty ≤ min(tx, 1− tx) (7)
0 ≤ tz ≤ ty.

The Weyl chamber is shown in Figure 2a. It contains the
Cartan coordinates of every two-qubit gate, making it a
compelling example to demonstrate our interpolation method;
the ability to perform any operation in the Weyl chamber with
high fidelity using a single pulse could significantly improve
the performance of existing quantum computers. For a more
in-depth introduction to Cartan coordinates we refer the reader
to [29]. We note that pulse optimization for target operations
within the Weyl chamber has been considered before, e.g.
[30]–[32]; however, here we demonstrate optimization for all
operations in the Weyl chamber together, which to the best of
our knowledge has only been considered in [20]. In this work,
we demonstrate our interpolation scheme for operations of the
form (6) with k1 = k2 = I for all parameter points that lie
within the Weyl chamber (7).
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Fig. 4. Interpolation quality after applying the re-optimization scheme. Axes
on the top plots correspond to the three Cartan coordinates of two-qubit gates.
Reference pulses are generated by optimal control software for 14 reference
points in parameter space. Pulses for any point in the chamber can be obtained
by linear interpolation between reference pulses. Left: interpolated pulse
infidelities at 819 test points (granularity 1/24) after initial optimization of
reference points. Black lines connect reference points and define the simplicial
mesh that is used for interpolation. Each colored point represents a unitary
operation defined by its coordinates. The color of each point is the infidelity of
the pulse that is obtained via interpolation. Mean infidelity is 1.3±1.2×10−2.
Right: results after repeatedly re-optimizing each reference point to be near
the average of its neighbors. Mean infidelity is improved to 1.0±0.8×10−4.

To evaluate the performance of our approach in comparison
to [20], we use the same two-qubit Hamiltonian

H(t) = f ~αxx(t)σ
(1)
x σ(2)

x +

2∑
j=1

f ~αjy(t)σ
(j)
y + f ~αjz(t)σ

(j)
z (8)

for specific parameter values ~α. The five control functions
f(t) are each restricted to values in [−1, 1], and the pulse
duration is fixed to π. We optimize reference pulses using the
procedures described previously and then test the interpolation
quality by evaluating the infidelities of interpolated pulses for
new operations in the space. We perform several rounds of
neighbor-average re-optimization and track the improvement
in average infidelity.

Each control function f(t) is decribed as a piecewise-
constant function of 20 segments, yielding 100 total optimiz-
able parameters. We set the Tikhonov regularization weight
λ = 10−2. The pulse optimizer is run for a maximum of 50
iterations for each individual optimization (or re-optimization),
although it often terminates early upon reaching convergence,
especially for later rounds of re-optimization where the pulse
shapes do not change as drastically. We found this itera-
tion limit to be sufficient for convergence over multiple re-
optimization rounds, and it also avoids unnecessary compu-
tation during early rounds of optimization (where the pulse
shapes need not be finalized). We use the default Q-CTRL
convergence criteria [24].

In Figure 3 we examine two specific control pulses for two
different reference points in the Weyl chamber. The two points
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Fig. 5. Different reference point granularities translate to varying amounts
of classical computation time needed to optimize all reference pulses. Con-
secutive points with the same granularity g correspond to subsequent re-
optimization rounds, which can further improve average (and maximum)
infidelity at the cost of more optimizer iterations. Each optimization iteration
corresponds to one system evolution. The points indicated by the plus sign
indicate the worst infidelity of any test point.

of interest are connected by an edge in the simplicial mesh,
and thus are influenced by each other in the neighbor-average
re-optimization process. Before the re-optimization steps, the
pulse shapes are noticably different, which leads to lower-
quality interpolation in between the pulses, as can be seen in
the left side of Figure 4. After re-optimization, the pulse shapes
are much more similar, although some differences remain
(the pulses cannot be identical because they perform different
operations). The infidelity at the test point directly between
these two reference points improved from 3.9× 10−2 initially
to 1.5 × 10−4 after the final round of re-optimization. In the
right side of Figure 4, we observe a significant improvement
in interpolated pulse accuracy across the entire Weyl chamber.

To investigate the relationship between calibration cost and
accuracy, we evaluate the performance of our method for
several different reference point granularities and varying num-
bers of re-optimization rounds, which both influence the total
computation time. We evaluate reference point granularities
from 1

2 to 1
8 and perform up to 10 rounds of re-optimization.

We use the cumulative sum of all iterations used by the
optimizer (equivalent to the total number of cost function eval-
uations) as a measurement of the classical computation time
required to calibrate the interpolation landscape. Our results
are shown in Figure 5. We find that performance generally
improves with more computation, whether this is achieved
by more rounds of re-optimization or a denser sampling of
reference points. However, we observe diminishing returns
when applying many rounds of re-optimization at the same
reference point granularity; simply performing more rounds
of re-optimization will not always yield better results, and
moving to a higher density of reference points can give a
much better performance gain for the same amount of total
computation time. Overall, the data suggests that computation
time is a relatively accurate predictor of interpolation quality
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Fig. 6. Infidelities at 2197 test points within the parameter space of single-qubit rotations (see Equation (9)). Average and worst-case infidelities are shown
in Table I. We observe a region of extremely poor interpolation quality (yellow), indicating that the pulses on either side of this area have very different
shapes and actions. Intuitively, the pulses on the two different sides of this boundary take different routes around the Bloch sphere to reach the target unitary.
Subsequent rounds of neighbor-average re-optimization reduce the size of this poor interpolation region and eventually eliminate it, resulting in an average
interpolation infidelity (across all test points) of 3.5± 6.6× 10−6 after three rounds of re-optimization.

TABLE I
INTERPOLATION INFIDELITIES FOR THE SPACE OF SINGLE-QUBIT ROTATIONS AFTER VARYING ROUNDS OF RE-OPTIMIZATION.

Re-optimization rounds 0 1 2 3 Ref. [20]

Average infidelity 1.3(2.8)× 10−1 1.2(2.7)× 10−1 2.0(12)× 10−2 3.5(6.6)× 10−6 4(5)× 10−4

Maximum infidelity 7.7× 10−1 7.8× 10−1 7.7× 10−1 5.4× 10−5 N/A
Total iterations 4680 5445 6072 6654 51200

TABLE II
INTERPOLATION INFIDELITIES FOR THE CARTAN COORDINATE [0, 1]3 BOX AFTER VARYING ROUNDS OF RE-OPTIMIZATION.

Re-optimization rounds 0 1 2 3 4 Ref. [20]

Average infidelity 1.2(2.5)× 10−1 8.2(21)× 10−2 4.6(16)× 10−2 6.6(60)× 10−3 4.2(6.6)× 10−4 4(4)× 10−4

Maximum infidelity 7.1× 10−1 6.8× 10−1 6.7× 10−1 6.1× 10−1 3.9× 10−3 N/A
Total iterations 6270 11068 15157 18406 21377 51200

regardless of the specific reference point distribution or num-
ber of re-optimization rounds.

VI. COMPARISON TO PREVIOUS METHODS

Finally, we evaluate our approach in comparison to existing
methods. We compare to [20] for two gate families. The first
is the three-parameter family of single-qubit gates

U = exp

(
− iπ

2

(
txσx + tyσy + tzσz

))
(9)

for tx, ty, tz ∈ [0, 1]. The second family is the three-parameter
family of all two-qubit gates that we have studied in pre-
vious sections (6). However, instead of restricting to the
Weyl chamber, [20] considers a larger volume within this
space, specifically tx, ty, tz ∈ [0, 1]. This space is 24 times
larger than the Weyl chamber, making it significantly more
computationally expensive to calibrate using our method3. We

3The Weyl chamber alone contains the Cartan coordinates of all two-qubit
gates, so this larger space merely serves to increase the complexity of the
problem without adding any additional benefit.

use the same Hamiltonian model (8) (considering only the first
qubit for the single-qubit gate case).

A. Results

For the single-qubit gate family, [20] reports average pulse
infidelity of 4±5×10−4 after using 51,200 system evolutions
to train the neural network. Our results for the same space of
single-qubit gates are shown in Figure 6 for various numbers
of re-optimization rounds. We use a reference point granularity
of 1/4 (125 points). Infidelities are evaluated on a grid in
parameter space with granularity 1/12 (2197 test points). Large
regions of parameter space appear to interpolate reasonably
well after the initial optimization round; we attribute this to the
relatively simple operation space, and to the initial Tikhonov
regularization that rewards low-amplitude pulses. As shown
in Table I, our method reaches an average pulse infidelity
of 3.48 ± 6.63 × 10−6 in 6,654 total iterations (where each
iteration corresponds to a system evolution), an improvement



of over two orders of magnitude in average infidelity with 7.7x
lower calibration cost compared to [20].

For the two-qubit case, [20] achieves an average infidelity
of 4 ± 4 × 10−4 using 51,200 system evolutions. We use a
reference point granularity of 1/6 (343 points) and once again
test interpolation quality on 2197 points. Our results for the
two-qubit Cartan coordinate space are summarized in Table II.
We obtain a similar average infidelity to [20] after two rounds
of re-optimization with 2.4x lower calibration cost.

We observe a sharp jump in average infidelity between
rounds 2 and 3 in the single-qubit case (Table I), whereas the
two-qubit example shows a much more consistent downwards
trend, improving by around 1 order of magnitude after each
round of re-optimization. This is caused by the yellow region
that is visible in the testing data in Figure 6; the very
large infidelities at these points significantly affect the overall
average. Once this yellow region disappears, the maximum
test point infidelity and the average infidelity both decrease
by four orders of magnitude.

We also observe a relatively small additional iteration cost
of performing subsequent rounds of re-optimization. We at-
tribute this to the fact that it takes fewer iterations for the
pulse optimizer to find a good solution when it starts from a
good initial guess.

These results demonstrate that our method can obtain
similar or better results than previous methods with lower
computational costs. We expect that calibration cost of our
method could be further reduced in several simple ways. For
example, the infidelity convergence threshold of the pulse
optimizer could be reduced for intermediate re-optimization
rounds, since the reference pulses are re-optimized several
times and intermediate results are therefore not required to
be perfect. Additionally, some reference points may not need
to be re-optimized as many times as others if they already
have very low neighbor-average Tikhonov penalty.

VII. ALTERNATIVE APPROACHES TO OPTIMIZATION AND
INTERPOLATION

In this paper, we demonstrate our procedure using
the neighbor-average Tikhonov regularization method and
piecewise-linear interpolation. However, the general idea of
creating reference pulses to interpolate between could have
many possible implementations. Below, we list several possi-
ble modifications of our method.
• Nonuniform reference point distribution. Reference points

need not be distributed on a rectangular grid; the De-
launay mesh methods will work just as well with a
nonuniform distribution of points. It may be effective
to use more densely-packed reference points in certain
parts of parameter space to give better interpolations, or
less dense points in other areas to improve calibration
efficiency.

• Different guess methods for Tikhonov re-optimization. In
this work, we use the simple neighbor-average method
to generate the initial guesses for our Tikhonov regular-
ization re-optimization approach. However, our general

approach could also be applied using guesses generated
in some other way. For example, each new reference point
guess could be a weighted sum of all reference pulses,
with weights determined by the trace distance between
the unitary operations.

• Selective re-optimization. Some reference points likely
do not need to be re-optimized if they already have a
high degree of similarity to neighboring reference pulses;
computation time could be easily improved by only re-
optimizing the points that differ from nearby pulses
by more than some threshold amount. This would also
provide a precise stopping criteria for the calibration
process.

• Higher-order interpolation fits. Regardless of optimiza-
tion method, different methods can be used for the
interpolation step of the procedure. In this paper, we show
results using a simple piecewise-linear interpolation. Al-
ternatively, interpolation could be done using a higher-
order model such as a spline or other function.

We do not perform these other interpolation methods for
this paper due to the effectiveness of the simpler linear model
and lack of a clearly-motivated choice of a more intricate
method. However, our general framework is flexible and will
work with any optimization or interpolation method, and we
anticipate that more complex methods could potentially yield
better results, depending on the system and gate family of
interest.

VIII. DISCUSSION

Our method improves on the work of [20] by achieving
similar pulse accuracy with less total computation required.
The procedure has the additional benefits of explainability and
modularity. The interpolation space contains known reference
points with high-fidelity pulses, with the benefit that specific
points can be re-optimized without needing to recalibrate the
entire space. Modularity is important in the case where simple
optimal control pulses do not transfer well to experimental
settings (which is generally expected due to significant device
variations over time [33]–[35]); more advanced optimization
routines such as data-driven or robust methods [14]–[16], [22],
[23] can directly replace the optimal control unit without
needing to redesign the rest of the procedure.

The Weyl chamber example demonstrates the potential of
this calibration routine, allowing the pulses for any two-qubit
gates (up to single-qubit operations) to be instantly obtained
with infidelities of 1.0± 0.8× 10−4 after only 2828 iterations
of the pulse optimizer. On a real device, a similar calibration
routine could allow quantum hardware to natively support any
two-qubit operation directly at the pulse level, which could
yield significant improvements in both execution time and
accuracy by avoiding expensive gate decompositions.

We have described a method to generate a continuous space
of control pulses which are constrained to be as similar as
possible to each other. In addition to integrating robust pulse
optimization methods, it may be beneficial to recalibrate this
control pulse space over time to account for device variation



over time, which is a significant problem in current quantum
hardware [33]–[35]. We suspect that this recalibration could
be significantly less expensive than simply recalibrating every
reference pulse due to the high degree of similarity among
nearby pulses (e.g. Figure 3).

Our neighbor-average re-optimization procedure makes no
assumptions about the structure of the parameter space of
interest, and thus may not be optimal; we expect that better-
motivated approaches could potentially yield higher-accuracy
or more efficient interpolations by taking into account the
structure of the gate family of interest. The specific method
we use in this paper is easily-implemented and conceptually
simple, so we provide it as a baseline for future improvements.

Python code used to generate the results in this work is
publicly available in a Github repository [36].
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C. Häggström, C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V.
Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders,
F. Wilhelm, G. Young, G. A. Price, G.-L. Ingold, G. E. Allen, G. R.
Lee, H. Audren, I. Probst, J. P. Dietrich, J. Silterra, J. T. Webber,
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