
Qompress: Efficient Compilation forQuquarts Exploiting Partial
and Mixed Radix Operations for Communication Reduction

Andrew Litteken
litteken@uchicago.edu
University of Chicago

Chicago, IL, USA

Lennart Maximilian Seifert
lmseifert@uchicago.edu
University of Chicago

Chicago, IL, USA

Jason Chadwick
jchadwick@uchicago.edu
University of Chicago

Chicago, IL, USA

Natalia Nottingham
nottingham@uchicago.edu

University of Chicago
Chicago, IL, USA

Frederic T. Chong
chong@cs.uchicago.edu
University of Chicago

Chicago, IL, USA

Jonathan M. Baker
jmbaker@uchicago.edu
University of Chicago

Chicago, IL, USA

ABSTRACT
Quantum computing is in an era of limited resources. Current hard-
ware lacks high fidelity gates, long coherence times, and the number
of computational units required to perform meaningful computa-
tion. Contemporary quantum devices typically use a binary system,
where each qubit exists in a superposition of the |0⟩ and |1⟩ states.
However, it is often possible to access the |2⟩ or even |3⟩ states
in the same physical unit by manipulating the system in different
ways. In this work, we consider automatically encoding two qubits
into one four-state ququart via a compression scheme. We use quan-
tum optimal control to design efficient proof-of-concept gates that
fully replicate standard qubit computation on these encoded qubits.

We extend qubit compilation schemes to efficiently route qubits
on an arbitrary mixed-radix system consisting of both qubits and
ququarts, reducing communication and minimizing excess circuit
execution time introduced by longer-duration ququart gates. In
conjunction with these compilation strategies, we introduce several
methods to find beneficial compressions, reducing circuit error due
to computation and communication by up to 50%. These methods
can increase the computational space available on a limited near-
term machine by up to 2x while maintaining circuit fidelity.

CCS CONCEPTS
• Hardware → Quantum computation; • Computer systems
organization→ Quantum computing.

KEYWORDS
quantum computing, qudit, compilation
ACM Reference Format:
Andrew Litteken, Lennart Maximilian Seifert, Jason Chadwick, Natalia
Nottingham, Frederic T. Chong, and Jonathan M. Baker. 2023. Qompress:
Efficient Compilation for Ququarts Exploiting Partial and Mixed Radix
Operations for Communication Reduction. In Proceedings of the 28th ACM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9916-6/23/03. . . $15.00
https://doi.org/10.1145/3575693.3575726

International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’23), March 25–29, 2023, Vancouver,
BC, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3575693.3575726

Figure 1: Pairs of qubits can be compressed in four-
dimensional ququarts and interact with each other inter-
nally or through partial operations, enabling novel compi-
lation techniques and space reduction.

1 INTRODUCTION
Quantum computing has the potential to change the way we think
about what is computationally tractable. Today, quantum systems
exist, but there are far fewer qubits than what are required for
large error-corrected algorithms [22, 41]. There are product design
roadmaps to take us into the realm of thousands of qubits [18],
but quantum programmers will still be pushing against hardware
space constraints, looking for optimizations to maximize hardware
utilization.

A typical quantum architecture is constructed of binary qubits,
which have two distinct states representing 0 and 1. However, this
binary abstraction is not the whole picture. Some quantum hard-
ware, such as superconducting qubits [13] and trapped ions [38],
have natural access to energy levels beyond the 0 and the 1 states
that can be used as extra computation space. Previous studies have
adapted qubit-based quantum programs to temporarily access these
higher states in order to improve circuit fidelity and circuit runtime
[5, 30, 31]. However, these studies have been focused on hand op-
timization of specific subcircuits (such as the generalized Toffoli
gate) and applications instead of providing a general approach for
any quantum circuit.

Alternatively, higher qudit states can be used in a more general
way to save computational space. The information of two qubits

ar
X

iv
:2

30
3.

00
65

8v
1

 [
qu

an
t-

ph
]

 1
 M

ar
 2

02
3

https://doi.org/10.1145/3575693.3575726
https://doi.org/10.1145/3575693.3575726
https://doi.org/10.1145/3575693.3575726

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada A. Litteken, M. Seifert, J. Chadwick, N. Nottingham, F. Chong, J. Baker

can be fully encoded in a single ququart [4], storing two logical
units’ worth of information in a single computational unit of higher
radix. However, this strategy has been avoided due to several draw-
backs that scale with qudit dimension: quadratically increasing logic
gate execution time [32], reduced coherence time, and increased
difficulty of experimentally applying gates [8, 26]. These are sig-
nificant disadvantages for a NISQ device that already has limited
connectivity, short qubit lifetimes, and high gate error. However,
if these issues can be further mitigated, this general compression
method can effectively double the available computational space
on a quantum computer for any arbitrary circuit.

Previous work has attempted temporary ququart encoding to
harness the potential for fast "internal" gates between the two
encoded qubits, but had to decode for any operation outside of a
specific ququart. In this work, we use quantum optimal control to
synthesize a specific set of gates, that can interact two qubits in the
same ququart, a qubit outside of a ququart with a qubit encoded in
a ququart, or two different qubits encoded in two different ququarts
ququarts, allowing us to selectively compress certain qubit pairs
while leaving others as bare qubits. Each of these gates have varying
speeds, and are shown in Figure 1.

A mixed-radix paradigm where qubits are directly manipulated
within an encoded ququart adds a degree of flexibility not found in
the prior work. Inter-ququart operations no longer incur the extra
cost of encoding and decoding. Motivated by these new gates, we
explore strategies to efficiently generalize partial ququart compres-
sion of a circuit to be used with any qubit-based circuit. The partial
qubit-ququart and mixed-radix operations inform the design of a
compilation pipeline designed to take advantage of the flexibility
of our gate set while minimizing the error due to decoherence.

We propose several different strategies to find the ideal compres-
sion to make the best use of the newly-found ququart compilation
methods. The main contributions of this work are the following:

• Develop a library of high-fidelity mixed qubit-ququart oper-
ations for partially compressed qubit systems via quantum
optimal control for a realistic device Hamiltonian.

• Detail a compiler pipeline that takes advantage of partial
ququart operations for mixed-radix computing.

• Evaluate several compression strategies to selectively encode
qubits in ququarts using the new compiler pipeline.

• Demonstrate simulated increases in gate fidelity ofmore than
50% over standard qubit-only compilation across various
quantum architectures, as well as up to 2x increased qubit
capacity, while accounting for the increased coherence errors
associated with operation on ququarts.

2 BACKGROUND
2.1 Quantum Computing
The fundamental unit of quantum computation is the qubit. Unlike
a classical bit, a qubit can exist in a linear superposition, of |0⟩
and |1⟩ as |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩. A quantum program, or circuit, acts
on 𝑁 qubits, and its state can be represented as a superposition
of 2𝑁 bitstrings. Logic gates manipulate this superposition; for
example, the X operation flips the |0⟩ and |1⟩ states of a single
qubit, performing the operation X |𝜓 ⟩ = 𝛽 |0⟩ + 𝛼 |1⟩.

Multi-qubit gates, such as CNOT, can be used to create entan-
gling relationships between qubits. Together, superposition and
entanglement enable quantum computing to solve problems that
are potentially intractable on classical computers.

2.2 Higher Radix Computation
While the qubit abstraction focuses on only the lowest two energy
levels of a quantum system as logical states, we can more generally
consider qudits which utilize the lowest 𝑑 − 1 levels as logical states.
Many hardware technologies have access to these energy levels,
but are usually limited by the ability to effectively control them.
Current systems typically only use these additional states to speed
up the implementation of multi-qubit gates that still logically use
only two levels. This work focuses on qudits that occupy the lowest
four energy levels (|0⟩, |1⟩, |2⟩, and |3⟩), which we call ququarts. In
general, qudit computation is not asymptotically better than qubit
computation – both schemes can universally express quantum
computation, and full translation from one radix to another affords
only constant advantages [20].

Practical use of qudits (particularly qutrits and ququarts) at the
application level have focused on hand optimization, often con-
strained to a small number of applications. These works [4, 31]
focus primarily on temporary access of these logical states, observ-
ing primarily a reduction in space requirements by small expansions
of the computation space of logical units such as temporarily ac-
cessing the third state to use as a carry bit. This prior work also
demonstrates that an explicit compression of qubits into ququarts
can free up additional ancillary space to expand the usefulness of
limited hardware, but this approach is only effective when circuits
contain qubits explicitly known to be in the |0⟩ state.

These works opt to avoid any computation on the compressed
information, apart from compression and decompression, as it be-
comes increasingly challenging to effectively control qudits with
larger dimension [12]. Characterizing higher energy levels is diffi-
cult as they aremore prone to noise and suffer from lower coherence
times, at a rate of around𝑇1/(𝑑 −1), where 𝑑 is the qudit dimension
and 𝑇1 is the coherence time for a qubit [8]. So, every use of these
higher levels is more prone to failure, especially for longer circuits,
making them more difficult to efficiently utilize.

2.3 Quantum Optimal Control
Gates on a device are implemented by applying hardware-specific
control fields 𝑓𝑘 (𝑡) to the qudit(s) involved in the operation. In
superconducting architectures, control fields are analog microwave
pulses. Quantum optimal control searches for a control sequence
that best replicates the effect of a target logic gate. Different al-
gorithms and toolboxes have been designed for this purpose [23,
28, 35, 42]. In this work, we use the open-source optimal control
software Juqbox [35, 36] to find the shortest-duration control pulse
sequence that reaches a specified fidelity for each logic gate of
interest. Juqbox optimizes the control fields 𝑓𝑘 (𝑡) to minimize an
objective function 𝐽 [𝑓𝑘] = 1 − 𝐹 [𝑓𝑘] + 𝐿[𝑓𝑘] consisting mainly of
the gate fidelity

𝐹 [𝑓𝑘] =
1
ℎ2

���Tr{𝑈 †
𝑇
[𝑓𝑘]𝑉

}���2 (1)

Qompress: Efficient Compilation for Ququarts ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

between the target unitary𝑉 and the applied transformation𝑈𝑇 [𝑓𝑘],
where ℎ is the Hilbert space dimension of the logical subspace. This
is achieved by repeatedly solving the Schrödinger equation and
adjusting the control fields in every iteration to minimize 𝐽 . The
full Hilbert space of the optimization typically includes additional
guard states to capture the influence of higher energy levels present
in superconducting systems [29, 35]. As these guard states are not
part of the logical subspace, their populations are penalized with a
leakage term 𝐿[𝑓𝑘] in the objective function.

2.4 Related Work
Use of additional logical levels for quantum computation is not new.
There have been two primary considerations for their use. First,
full translations from qubits to qudits, usually of small dimension
𝑑 , have been proposed. For example, translation has been used to
implement arithmetic or Shor’s algorithm [9, 10], which require an
expanded gate set to implement generalized ternary gates. Second,
temporary use of additional logical states has been shown to be use-
ful in specific cases. In these cases, programs begin and end entirely
as qubits, but during computation temporarily access additional
logical levels. These works focus on a small set of applications such
as the generalized Toffoli gate and adders [5, 46] and rely on hand
optimization to extract benefit from these states without using too
many gates or spending too much time occupying these states.
This temporary use strategy has been generalized as compression
[4] to generate ancilla to speed up specialized subcircuits. These
prior works operate in the gate model only, assuming that gates on
different dimension qudits are effectively the same - they can be
executed with equivalent fidelity and execute in a similar amount
of time. They also generally ignore architectural connectivity con-
straints and the inherent increased cost to communicate qudits at
long distances. While gate representations are useful, they omit
crucial systems level details, such as gate duration and pulse im-
plementation fidelity, which determine the viability of mixed radix
computation in general. Prior work has shown a worst-case qua-
dratic increase in gate duration [32] for higher-dimensional gates,
meaning in practice we must be extremely careful about how we
use qudits.

3 QUDIT PULSE GENERATION
Qudit logic gates are typically assumed to require long durations to
implement, due to the increased complexity of the Hilbert spaces
involved [32]. This is a problem for several reasons: First, longer-
duration gates lead to overall longer-duration circuits; second,
higher qudit states have shorter decoherence times [8], amplifying
the negative effect of these longer circuits. However, by explicitly
synthesizing control pulses for higher-radix gates, we find gate
durations that scale efficiently enough to provide overall circuit
benefits when combined with a tailored compiler.

3.1 Compression and Gate Set
We follow a qubit to ququart compression scheme inspired by [4].
Encoding the state of two qubits |𝑞0𝑞1⟩ into a single ququart state
promotes one of the qubits 𝑞0 to a ququart while transforming the
other qubit 𝑞1 to an ancilla in the ground state |0⟩. While this is
referred to as a compression, we do not lose any data. It is the full

Figure 2: Two qubits 𝑞0 and 𝑞1 can be encoded into a
ququart (blue oval) and interact with each other internally
(green), with a bare qubit 𝑞 outside (yellow), or with en-
coded qubits in a different ququart (red). CX arrows point
from control qubit to target qubit. Along each CX link, cor-
responding SWAP gates are defined with the same super-
scripts/subscripts (not shown).

representation of two qubits, in a single physical unit. We define
the encoding gate ENC as

ENC =

|0⟩ |0⟩ → |0⟩ |0⟩
|0⟩ |1⟩ → |1⟩ |0⟩
|1⟩ |0⟩ → |2⟩ |0⟩
|1⟩ |1⟩ → |3⟩ |0⟩

(2)

This gate defines the encoding scheme; for example, the |2⟩ ququart
state represents the |10⟩ qubit-qubit state, and we can perform
logical operations on the ququart states as if they are the states of
two qubits. We note that, since we do not expect 𝑞0 or 𝑞1 to be in
a ququart state prior to the encoding operation, the extension of
ENC to a full ququart-ququart unitary gate is arbitrary.

Additionally, to measure a ququart, we simply use the mapping
in reverse to determine the state of the two encoded qubits from the
state of the ququart. In a physically realized system, we are not able
to measure one encoded qubit without simultaneously measuring
the other, unless the qubits are first decoded.

3.1.1 Gate Set. Under this encoding scheme, qubit-equivalent op-
erations can be derived for ququarts that encode two qubits, some
of which are shown in Figure 2. For example, X gates acting on
the encoded qubit state |𝑞0𝑞1⟩ correspond to the ququart operators
X0 ∼ X ⊗ 1 (which switches the population of |0⟩ with |2⟩, as well
as |1⟩ with |3⟩) and X1 ∼ 1 ⊗ X. These gates can also be executed
in parallel by applying a ququart gate X0,1 ∼ X ⊗ X.

Any two-qubit gate acting on qubits encoded in the same ququart
can be expressed as a single-ququart gate. For example, an internal
SWAP gate (SWAP𝑖𝑛) corresponds to a simple X12 operation that
exchanges populations of the ququart |1⟩ and |2⟩ states. Similarly,
we can define internal CX gates {CX0, CX1} between the two
encoded qubits. On some hardwares, these operations can be done
much faster (and with higher fidelity) than the corresponding two-
qubit operations. However, in order to compile quantum circuits for
a mixed-radix quantum computer using both qubits and ququarts,
two-qubit gates between a bare qubit and an encoded qubit as well
as between encoded qubits in different ququarts are necessary. To
this end we extend our gate set by a variety of partial CX- and
SWAP-like gates acting on various qubit pairs as shown in Figure 2.
We define four partial CX gates {CX𝑞0, CX𝑞1, CX0𝑞 , CX1𝑞} and two

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada A. Litteken, M. Seifert, J. Chadwick, N. Nottingham, F. Chong, J. Baker

partial SWAP gates {SWAP𝑞0, SWAP𝑞1} that realize the respective
two-qubit gate between a bare qubit and an encoded qubit. Similarly,
four partial CX gates {CX00, CX01, CX10, CX11} and three partial
SWAP gates {SWAP00, SWAP01, SWAP11}1 can manipulate the
states of encoded qubits in different ququarts. We further include
the full ququart-ququart SWAP4 gate to enable routing of ququarts.

3.2 Device Model
We obtain durations of gates in our system by explicitly optimiz-
ing high-fidelity control pulses for superconducting hardware. We
model two-qudit subsystems with two weakly coupled, anharmonic
transmons [29] with total Hamiltonian

𝐻 (𝑡) =
2∑︁

𝑘=1

[
𝜔𝑘𝑎

†
𝑘
𝑎𝑘 + 𝜉𝑘

2 𝑎
†
𝑘
𝑎
†
𝑘
𝑎𝑘𝑎𝑘

]
+ 𝐽

(
𝑎
†
1𝑎2 + 𝑎

†
2𝑎1

)
+

2∑︁
𝑘=1

𝑓𝑘 (𝑡)
(
𝑎𝑘 + 𝑎

†
𝑘

)
,

(3)

where the first two terms comprise the drift Hamiltonian and the
last describes the effect of the control fields 𝑓𝑘 (𝑡) applied to the
transmons. We choose realistic physical parameters inspired by
[40]: The 0-1 transition frequencies of the transmons are 𝜔1/2𝜋 =

4.914GHz and 𝜔2/2𝜋 = 5.114GHz, and both transmons have the
same anharmonicity 𝜉1/2𝜋 = 𝜉2/2𝜋 = −330MHz. They are effec-
tively coupled with 𝐽/2𝜋 = 3.8MHz. For single-qudit gates we
reduce this model to 𝑘 = 1 and remove the 𝐽 coupling term. We re-
strict themaximum amplitude of the control fields to 𝑓max = 45MHz
to constrain potential leakage into guard states.

3.3 Optimizing Pulses
We aim to find control pulses of shortest duration for each gate. As
real quantum systems are limited by noise effects such as decoher-
ence, this allows us to investigate the expected cost of using these
gates in quantum circuits. Juqbox only allows pulse optimization for
a fixed time interval [0,𝑇], therefore we minimize pulse durations
𝑇 by applying the technique from [39], which involves iterative
re-optimization with previous pulse results. This method aims to
find the shortest-duration pulse that can execute the desired gate
above a minimum fidelity target. In this work, our target fidelity
for single-qudit gates is 𝐹 = 0.999 and for two-qudit gates 𝐹 = 0.99.

Figure 3 visualizes equivalent state evolutions in two different
CX gates: the standard CX2 between two bare qubits and the partial
CX0𝑞 controlled by an encoded qubit and targeting an unencoded
qubit. In both cases, the control qubit is in state |1⟩ (the ququart
state |3⟩ is equivalent to the encoded qubit state |11⟩), causing the
target state to flip from |0⟩ to |1⟩. An important observation is the
difference in complexity of the state dynamics for the two gates.
CX0𝑞 operates on twice as many states in the logical subspace as
CX2. This suggests that the difficulty of finding high-fidelity control
pulses increases with Hilbert space dimension and explains the
variation in gate durations we observe when repeatedly optimizing
for complex two-qudit gates.

1We focus only on unique gates; SWAP01 and SWAP10 are equivalent.

CX2 state evolution (a) CX state evolution 0q(b)

Figure 3: Exemplary state evolutions of two CX gates be-
tween (a) two bare qubits and (b) a bare qubit and an encoded
qubit. (a) The control qubit𝑞0 is in state |1⟩, hence the state of
the target qubit 𝑞1 is flipped. (b) The encoded qubit 𝑞0 inside
the ququart controls the CX gate targeting the bare qubit
𝑞. The ququart state |3⟩ corresponds to the two-qubit state
|𝑞0𝑞1⟩ = |11⟩, so the state of 𝑞 is flipped.

3.4 Qudit Gate Durations
Table 1 shows the minimum-duration results for logic gates of
interest (described in Section 3.1). In the compiler and benchmarks,
we assume that any single-qubit gate will have a similar duration
to an X gate, so we do not explicitly find pulses for other single-
qubit gates such as H or Z. SWAP gates, which move data around
the architecture, are extremely common in limited connectivity
devices; while they can be decomposed into three CNOTs, we find
that optimized pulses can perform a SWAP operation in far shorter
time than this would imply, so we explicitly optimize SWAP gates.

We observe several interesting relationships across gate types.
Using an internal CNOT or SWAP instead of its corresponding
qubit-qubit operation gives a significant speedup. Additionally, a
SWAP between a bare qubit and an encoded qubit (680 or 792 ns)
is significantly faster than a SWAP between two encoded qubits
(892-964 ns). We emphasize that these relationships are specific to
this Hamiltonian, and another system may have different tradeoffs
in gate durations. Our goal is to design a compiler that can adapt
to different sets of gate durations to determine favorable ququart
encodings, without explicitly depending on a specific relationship
such as the internal CNOT advantage shown here.

3.5 Technical Barriers
The main technical barrier to a physical implementation of this
scheme is accurate control of quantum logical units at higher energy
levels, not the ability to access them. There are several documented
machines that use qutrits [8, 11, 17, 24] and demonstrations of
ququart devices [12]; although calibration of these devices is more
time-consuming, it is not a fundamental limitation. In supercon-
ducting systems, as the energy level increases, increased charge
noise causes phase errors and faster state decay, making control
more difficult [8, 26, 29].

There is precedent for use of more than two energy levels, e.g.
as protection or guard states or to improve measurement and expe-
dite qubit-level gates [19, 29, 30, 33], indicating that it is possible
to reliably use higher-energy states. However, at present, we are

Qompress: Efficient Compilation for Ququarts ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 1: Shortest pulse durations found for gates of interest (see Figure 2), in nanoseconds. a) CNOT and SWAP operations
between two encoded qubits in the same ququart become single-ququart operations, making them significantly faster. b) Stan-
dard two-qubit gates for comparison. c) Gates between one encoded qubit and one bare qubit. (d) Gates between two encoded
qubits in different ququarts. Note: CX10 and CX11 minimum durations converged to larger values than shown; however, these
can be done faster using internal SWAP operations and CX00, giving a duration of 78 + 544 + 78 = 700 ns.

(a) Qudit (b) Qubit-Qubit (c) Qubit-Ququart (d) Ququart-Ququart
X 35 X0 87 CX2 251 CX0𝑞 560 CX𝑞0 880 CX00 544 CX01 544
X1 66 X0,1 86 SWAP2 504 CX1𝑞 632 CX𝑞1 812 CX10 700 CX11 700
CX0 83 CX1 84 SWAP𝑞0 680 SWAP𝑞1 792 SWAP00 916 SWAP01 892
SWAP𝑖𝑛 78 ENC 608 SWAP11 964 SWAP4 1184

not aware of experiments using highly-optimized pulses for these
energy levels, which would be a potential challenge for the results
shown in this work.

As access to calibrated devices with high-dimensional qudits
is extremely limited, our methods are currently difficult to phys-
ically verify, and the efficiency of controlling these energy states
remains an open question. The overhead and difficulty of control-
ling higher energy states are potential issues and may change the
benefits found in the work. We attempt to be as realistic as possi-
ble by designing this scheme with a transmon Hamiltonian based
on IBM’s real hardware, similar to that which has experimentally
demonstrated support for qutrit operations [17]. Quantum optimal
control has experimentally been proven successful in synthesiz-
ing accurate pulses within a certain error threshold for qubit-only
gates on similar devices [2], so we are optimistic that the scheme
and compilation strategy laid out in this work will be applicable.
Additionally, in an ongoing collaboration with the Schuster group
[1], we are working to validate our methodology and have to date
demonstrated some single ququart gates with high fidelity. While
the control pulses that we obtained in this section do not corre-
spond to a real, fully characterized device, we again emphasize
that the compilation techniques discussed in the following section
are independent of the specific control pulses used, and will adapt
to gate durations and error rates different than obtained here. We
intend this work to act as a proof-of-concept to demonstrate the
potential value of accessing higher-energy qudit states and as a
motivating factor to improve ququart characterization and control.

4 QOMPRESS: COMPILATIONWITH
PARTIAL OPERATIONS

Compiling a circuit for an architecture which supports full encod-
ing of qubits into ququarts is not fundamentally different from
compiling in a qubit-only architecture. However, we must account
for higher connectivity and varying efficiency of operations be-
tween different pairs of qubits based on their configuration. This
includes a new library of communication gates, including the en-
coding gate, mixed-radix gates, and cross-ququart gates. We extend
current compiler technologies to account for these new variables
and fully utilize the unique set of gates to minimize space require-
ments while increasing expected circuit success rate and ideally
minimizing increased circuit durations.

4.1 Representing a Ququart Architecture
Each quantum unit in the system can either be treated as a bare
qubit only accessing the lowest two energy levels, or a full ququart
which can access the lowest four. We represent this mixed-radix
architecture via two graphs. One represents the overall topology
of the architecture, where each node represents a single quantum
logic unit and edges represent allowed communication between
these units. The second represents the logical qubits we will be
mapping onto from our original circuit. In this graph, each phys-
ical unit is treated as if it is a ququart, and is expanded into two
qubit nodes that are connected to one another, called an interaction
graph. Both qubit nodes in the expanded ququart are connected to
each qubit node contained in adjacent ququarts. For example, if a
ququart was connected to 𝑛 other ququarts, each encoded qubit is
connected to 2𝑛 + 1 other encoded qubits. In the secondary qubit
graph, there are 2𝑉 nodes and 4𝐸 + 𝑉 edges, where 𝑉 and 𝐸 are
the number of physical logic units and number of interacting pairs
of units, respectively. This expansion is shown in Figure 2. Edges
are annotated with a set of execution times and error rates for CX
gates and SWAP gates, which differ depending on whether either
unit is a bare qubit or encoded within a ququart.

4.2 Extending Mapping, Routing, and
Scheduling

Current quantum architectures do not have all-to-all connectiv-
ity; in limited-connectivity architectures, non-adjacent operands
require communication to be inserted into the circuit, adding costs
such as increased gate count and/or duration. In general, the goal of
mapping, routing, and scheduling is to reduce these costs as much
as possible, as both contribute to reduced circuit success. Mapping
and routing has been studied extensively in the qubit-only case
[14, 25, 44] and in some initial studies for intermediate qudits [31].

However, in our proposed mixed-radix system, not all commu-
nication is equivalent, or even similar, in cost. A CX gate between
a qubit and ququart is lower fidelity and has a longer duration
than a CX gate between encoded qubits inside the same ququart.
Therefore, our compilation schemes aim to reduce error and circuit
duration by taking advantage of gates unique to ququart systems.

The goal of mapping is to place frequently-interacting qubits
close to one another on the device. Since the ququart architecture is
modeled as a set of qubits with different connections, we can easily
extend mapping strategies designed for qubit-only architectures to

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada A. Litteken, M. Seifert, J. Chadwick, N. Nottingham, F. Chong, J. Baker

ququart-based architectures. First, we find an interaction weight
between each pair of qubits in the original circuit. We use the
weighting function𝑤 (𝑖, 𝑗) = ∑

𝑜∈𝐶 1(𝑖, 𝑗 ∈ 𝑜𝑞)/𝑠 (𝑜), where 𝑜 is an
operation in circuit𝐶 to represent the interactions between qubits 𝑖
and 𝑗 , and 𝑠 is a function from the operation 𝑜 to an integer time step
in the circuit, starting from 1. Denoting 𝑄𝑐 the set of qubits in the
circuit, we select the qubit that maximizes the highest total weight
to other qubits𝑊 (𝑖) = ∑

𝑗 ∈𝑄𝑐\{𝑖 }𝑤 (𝑖, 𝑗). We find the center-most
ququart in the architecture and place this qubit in the first encoding
position. For each unmapped qubit, we compute the greatest sum
of weights to the already placed qubits and score each potential
placement by how strongly it interacts with mapped qubits and its
distance from them.

In ourmixed-radix system, we only consider the second encoding
location in ququarts if the first encoding location has already been
mapped to. For qubits only, distance can be a simple shortest path
calculation, with edges weighted by the fidelity of the connection.
We do the same for ququarts, but with dynamic weighting based on
the current encoding of qubits. We represent the current duration
of gate 𝑔 at connection (𝑖, 𝑗) as𝑇 (𝑖, 𝑗, 𝑔) and the fidelity as 𝐹 (𝑖, 𝑗, 𝑔).
So, for a gate at a given connection, the probability of success
is 𝑆 (𝑖, 𝑗, 𝑔) = 𝐹 (𝑖, 𝑗, 𝑔)𝑒−𝑇 (𝑖, 𝑗,𝑔)/𝑇1,𝑖 𝑒−𝑇 (𝑖, 𝑗,𝑔)/𝑇1, 𝑗 , where 𝑇1 is the
decoherence time for a qubit or a ququart, whichever is being
used. This is a common metric of success for a quantum gate as
used in [43]. The aggregate probability of success for a given path
𝑃𝑛 of length 𝑛 is then modeled as:

𝑆 (𝑃) = − log(𝑆 (𝑃𝑛−1, 𝑃𝑛,CX))

+
𝑛−2∑︁
𝑖=1

[− log(𝑆 (𝑃𝑖 , 𝑃𝑖+1)), SWAP))]
(4)

This calculation allows us to account for errors introduced by
both the decoherence time and the number of gates. We repeat this
process iteratively until every program qubit has been mapped to a
hardware location represented in the extended ququart graph.

In our system, qubits are still tracked individually even if they
are both stored in the same physical object. Therefore, routing
for a mixed-radix device is still performed at the qubit level. Any
qubit routing strategy, such as lookahead strategies [3, 27, 47],
can be translated directly to encoded qubits in ququarts through
routing based on the logical qubit architecture graph rather than
the ququart-level graph. The main goal is to disrupt the current
mapping as little as possible as qubits that need to interact are
moved closer to one another. We choose the candidate location
which disrupts the current state of the circuit the least and moves
the qubits closer together based on the probability of success laid
out in Equation (4).

However, we do place some constraints on qubit movement.
First, we do not encode new ququarts during routing. Second, we
avoid swapping “through” ququarts when possible. Ququart opera-
tions remain expensive, and pairings determined during mapping
are often beneficial to reducing execution costs. Both of these will
incur extra costs. Additionally, by placing these restrictions on
the compiler, we ensure that there are fewer changes in the max-
imum energy level of the computational units, we can cache the
calculated distances, significantly reducing the amount of classical
computation required.

Circuits using fully encoded ququarts require more serialization
than an analogous qubit-only circuit. If, at a given time, each qubit
in a fully encoded ququart is involved in a CX operation, we can no
longer execute both gates in parallel and they must be sequenced
one after the other. To break this tie and avoid bottlenecks, we select
whichever operation is on the longest execution path of remaining
qubits. This can also be an issue for two single-qubit gates targeting
two qubits in the same encoded ququart. In this case, we combine
both operations into one single-ququart gate, as executing one gate
acting on a full ququart is less error prone than executing two
single-qubit gates.

5 QUBIT COMPRESSION STRATEGIES
Poor initial mapping can incur high communication costs later on.
Additionally, ququart gates are inherently more time-intensive and
can incur serialization, increasing circuit duration and error due
to decoherence. Simply extending qubit mapping strategies to the
expanded ququart-based graphs will not take any of these factors
into account, or take full advantage of the enhanced connectiv-
ity of fully encoded ququarts. In this section, we explore various
compression strategies to better account for these features.

5.1 Exhaustive Compression (EC)
The true effect of individual compression circuit duration or fidelity
cannot be reliably predicted without recompiling the circuit with
a prescribed compression. Further, finding the optimal set of com-
pressions is computationally difficult on its own since there are
exponentially many possible subsets. To get a sense for an upper
bound on circuit quality, we explore an exhaustive, but iterative
and greedy, search of qubit compressions.

At each step, we recompile the input circuit with every pair of
qubits compressed and choose the option that maximizes the circuit
fidelity. Searching every pair, while more complete, is computation-
ally demanding. Circuit duration is defined by the length of the
critical path and therefore it may be more advantageous to explore
only compressions which affect the critical path. When choosing
compressions we prioritize in order compressions which affect: 1)
qubits in non-communication gates on the critical path, 2) qubits
off the critical path that insert communication operations along the
critical path, and 3) qubits off the critical path. In group order, we
choose the best compression, if any, and repeat. We compare this
ordered selection to an unordered selection in Figure 4.

As can be seen in Figure 4, it is not the case that the compres-
sion of any two qubits will be advantageous to the combined gate
success rate or error due to decoherence. There are two classes of
advantageous compression. Some compressions are beneficial due
to high interactivity between the two encoded qubits, winning from
the fast internal gates. An example is the pairing of qubits 6 and
11 in the circuit shown in Figure 4(a). These qubits interact very
often, so compression increases the probability of success of CX
gate by turning it into a single-qudit gate. The second compression
type wins by reducing communication, such as the pairing of qubits
4 and 14 in the cylinder graph based circuit. These qubits rarely
interact, but this reduces the diameter of the circuit, decreasing
required SWAP gates. Critical path prioritization and an unordered

Qompress: Efficient Compilation for Ququarts ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

(a)

(b)

(c)

Figure 4: An example of an exhaustive search on a cylinder-
based interaction graph (a), using a (b) critical path focused
selection, and a (c) selection strategy that allows for any pair
to be selected.

search of the entire space result in similar success rate gains, but
different compressions but depends on the circuit structure.

Examining all potential compressions is quadratic in the number
of qubits in the circuit, on top of the relatively high complexities
required for mapping and routing. Using the insights found through
this method, we build strategies that are able to approximate these
benefits.

5.2 Extended Qubit Mapping (EQM)
EQM relies entirely on the interactions between the pairs of qubits,
and follows the algorithm in Section 4. There is no explicit pair
selection in this method. The qubits are filled greedily, based on the
highest weight to the already placed qubits. This strategy clusters
qubits that interact often closely together, but will likely preemp-
tively encode two qubits as it sees immediate benefits based on
those already placed, focusing on identifying interaction-based com-
pressions. But, it does have classical advantages: EQM is wrapped
into the mapping step, and the only additional complexity is due to
the expanded qudit graph.

5.3 Ring Based (RB)
While frequency of interaction is a good metric for identifying
locality, it fails to account for more holistic interaction structures.

Figure 5 shows that for certain circuits, such as the generalized
Toffoli gate and the Cuccaro adder, there is a regular, triangle-based
structure in the interaction graph.We can use compressions of these
triangles to transform the interaction graph into a line. Looking at
Figure 5(b), this means compressing pairs 0 and 1, 2 and 6, and 3 and
4. A linear interaction graph is a much more favorable structure to
mapping. In fact, for certain configurations, it can be mapped and
routed without any SWAPs on any architecture.

We can generalize this triangle compression to any size cycle. If
we can find beneficial compressions within a given set of cycles,
we may be able to further transform circuit interactions for more
effective mappings. It is computationally expensive to find all cy-
cles in an undirected graph, therefore for each qubit we find the
minimum size cycle which includes it. This ensures that each qubit
is contained in at least one cycle without finding all cycles. We
find the minimum cycle length from this set of cycles, and use it to
bound the maximum identifiable cycle size.

After we identify cycles, we find the qubits with the fewest
interactions outside their cycle and test compressions with each
other qubit in the cycle. For each compression, we collect informa-
tion such like the number of shared neighbors between qubits, the
weight of interaction between the compressed qubits, how often
they are interacted on simultaneously, and how many cycles this
pair appears in.

We prioritize compressions that maximize the number of inter-
nal interactions and the number of connections to other qubits
while minimizing the time the encoded qubits are used at the same
time, to make full use of both the higher fidelity internal ququart
interactions and the new partial ququart operations without intro-
ducing serialization. We pick the best compression based on these
metrics. The qubit nodes are removed from the interaction graph
and replaced with a single node representing the pair, with edges
connected to each interacting qubit or pair. Following these adjust-
ments to the interaction graph, we recollect interaction statistics
and repeat for other pairings until no other beneficial compressions
can be made.

5.4 Average Weight per Edge (AWE)
Another method, Average Weight per Edge, makes compressions
to maximize the average edge weight of the interaction graph. This
method takes advantage of shared interactions to increase potential
locality and reducing communication.

We examine each pair of qubits and select the pair that maximizes
the average weight per edge once the two qubit node is collapsed
into a single node. We repeat until no more compressions can be
made, or until there is no pairing that would increase the average
weight per edge.

5.5 Progressive Pairing (PP)
The final strategy is an extension of EQM, which is more com-
putationally intensive but collects more information. We start by
mapping the circuit to a qubit-only architecture. This provides a
full picture of how the circuit can be laid out on device, compared
to the incremental version provided by EQM. We again examine
each potential pairing and compute the estimated fidelity with and
without the compression based on changes in distance between

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada A. Litteken, M. Seifert, J. Chadwick, N. Nottingham, F. Chong, J. Baker

(a) (b) (c) (d)

Figure 5: (a), (b) Sample generalized Toffoli gate with corresponding interaction graph. (c), (d) Cuccaro adder with interaction
graph,MandNare three qubit gate blocks. Some circuits, such as theCNUcircuit andCuccaro adder have clusters of qubits that
interact with one another. These clusters can be identified by finding the cycles in the interaction graph. We have identified
the cycles here with colored edges.

(a) Cylinder Graph

(b) Torus Graph
(c) Binary Welded Tree

Figure 6: Examples of graph-based circuit interaction
graphs.

interacting pairs without remapping and rerouting. In this scheme
there are two choices when compressing two qubits A and B, either
A is first or B is first. We select compression adjustment that is
expected to increase the fidelity the most.

After selecting the pair that has the greatest increase in estimated
overall fidelity, we remap and re-evaluate the circuit with the given
pair and repeat the process. We continue this process until we
cannot find any pair that will reduce the estimated overall fidelity.
While this method scales quadratically, we avoid mapping and
routing for each possible pairing by only determining distances.
While less scalable than the other methods, Progressive Pairing
attempts to replicate the exhaustive search with much less classical
overhead.

6 EVALUATION METHODS
6.1 Architectures
One of the biggest limitations on a quantum architecture is simply
the number of qubits available for execution, which constrains
many currently feasible programs. Therefore, for different strategies
across circuit sizes, we test circuits on regular architectures that
are just large enough for the circuit in question. We use a rectangle
grid-based mesh as our architecture, with dimensions of ⌈

√
𝑛⌉ ×

𝑛

⌈
√
𝑛⌉ where 𝑛 is the number of qubits in the circuit. Each qubit is

connected to four other qubits directly adjacent to it except along
the border of the architecture. This construction allows for testing
the scalability of our methods and test performance in the edge
cases of high architectural usage.

We also examine our methods on the 65-qubit IBM Ithaca heavy-
hex topology [37] and a 65-qubit ring architecture. This gives us
a sense of how well our methods work on devices with more con-
strained connectivity.

6.1.1 Gate and Coherence Times Statistics. We have shown gate
times found via optimal control in Section 3.4. We use the target
fidelities for these gates as their success rates. Single-qudit gates
(regardless of Hilbert dimension) are optimized to a success rate
of 99.9% and two-qudit gates to 99% when simulated in an ideal
scenario without noise. The product of the success rate of every
gate in the circuit is the Expected Probability of Success (EPS) with
respect to gate execution.

To account for increasing noise in higher dimensional systems
we consider their coherence times (𝑇1), after which the qubits are
unable to maintain their elevated energy state. For a 𝑑-level system,
the coherence time is estimated to be 1/𝑑−1 of the 𝑇1 time for the
original two-level system [8]. Critically, because gate durations get
longer with corresponding lower𝑇1 times we capture the increasing
susceptibility to error in a mixed-radix system. We use a 163.5 𝜇s
qubit 𝑇1 time in our architecture, which gives a 54.5 𝜇s worst case
𝑇1 time when we are in a ququart state. [37]. The product of the
probabilities of no decoherence for each qubit, 𝑒−𝑡𝑞𝑏/𝑇1𝑞𝑏−𝑡𝑞𝑑/𝑇1𝑞𝑑 ,
is the EPS with respect to coherence time. Here 𝑡𝑞𝑏 is time spent in
the qubit state, and 𝑡𝑞𝑑 is the time spent in the ququart state.

The product of these two statistics gives the overall EPS for the
entirety of the circuit, and gives an upper bound for the amount of
error found in the circuit. It is the worst case for both gate fidelity
and coherence time as it assumes each qubit will be measured and
used for the entire duration of the circuit, and uses the worst case
coherence time ratio from qubits to qudits. However, it does not
take into account the effects of more complicated errors such as
crosstalk.

6.2 Baselines
We compare against two different baseline strategies, representing
the extremes of compilation for qubits on a ququart-supported
device.

Qubit-Only Compilation. One extreme is to never encode any
ququarts. In this case, we use EQM but never allow exploration of
the second encoded position. These strategies are comparable to
other compilation pipelines described in [34].

Full Ququart Pairing with Encoding and Decoding (FQ). There has
been discussion of the potential of fast internal ququart operations
and use ququarts for general qubit circuit compilation [4]. However,
without partial ququart operations, which were assumed to be as
expensive as any multi-qudit operation, any external operation

Qompress: Efficient Compilation for Ququarts ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

required decoding the two qubits, performing an operation, and
re-encoding. A drawback of this strategy is that extra space is
always required, since a decoding operation requires an ancilla bit
to decode into.

We are unaware of an automatic compilation pipeline constructed
for this strategy. We use an EQM strategy which allocates extra
decoding space next to fully encoded ququarts as the mapping strat-
egy. For routing, we use a similar strategy, but only at the qudit
level. This means that we only use full qudit SWAP gates to ensure
two qudits are adjacent to on another. Additionally, we must route
the empty decoding ancilla next to the neighboring qubits so that
we may perform decompression.

6.3 Benchmarking
We use a number of different types of circuits to explore many use
cases to test the viability of each compression strategy. One set of
circuits we explore have localized groups of qubits that interact
together. They have no potentially random operations that disrupt
the grouping of operations. These include the Cuccaro Adder [15],
Generalized Toffoli (CNU) [6], Quantum RAM (QRAM) [21] and
Bernstein Vazarani (BV) [7].

We are also interested in certain graph-based interaction struc-
tures. We use a QAOA construction [16] that accepts a graph where
each node represents a qubit and an edge represents an interaction.
For each edge, in a random order, we perform a CX, a Z gate, and
another CX gate. These circuits are not necessarily used in practice,
but allow for the examination of particular interaction structures
which may be relevant in optimization problems. We examine a
random graph with edge density 30%, a cylindrical graph shown
in Figure 6(a), a similar torus structure (Figure 6(b)) and a binary
welded tree (Figure 6(c)).

This set of circuits were selected to be representative of different
interaction graphs, and to explore the effects on mostly parallel
circuits (Generalized Toffoli) versus mostly serial circuits (Cuccaro
Adder and QRAM). Each of these circuits is tested across a range
of different sizes to examine how these different strategies scale as
the size of the circuit increases.

These compilers were constructed on top of the Qiskit library,
version 0.18.3 [3], on Python 3.9 [45]. The benchmarks were run
on a machine with Intel(R) Xeon(R) Silver 4110 2.10GHz, 132 GB of
RAM, on Ubuntu 16.04 LTS.

7 RESULTS
Two benefits of encoding into ququarts are the decrease in required
gates due to reduced communication requirements and the trans-
formation of some two-qubit gates into much faster single-ququart
gates. In Figure 7, we examine how the gate expected probabil-
ity of success (EPS) compares to qubit-only compilation for each
compression strategy on the same architecture.

Primarily, FQ (orange line, baseline) is consistently worse than
our qubit-only baseline. This is expected. Every out-of-pair oper-
ation requires more communication, plus the decode and encode
steps. As a result, we actually see increases in the number of gates,
as well as a decrease in the overall circuit gate fidelity.

Certain compression strategies are more advantageous than oth-
ers on different circuit constructions. In the more regularly struc-
tured circuits, namely CNU and Cuccarro adder, we see the greatest
gains in circuit fidelity due to gates from EQM (blue) and RB (red)
strategies, with improvements over 50% for both. In fact, these gains
match or exceed the EC (black, ideal) case, which requires much
more classical computation and is impractical for even moderately
sized programs. These circuits have focused interaction on varying
sets of qubits over time, as seen in Figure 5. The circuit interaction
graphs are very easy to flatten into a line by compressing qubits
within cycles, eliminating the need for communication. Then only
CX operations are needed.

However, the RB strategy is less consistent for BV and QRAM
circuits. For BV, this makes sense; there are no cycles to examine
in the interaction graph, so no compressions are made. But, QRAM
has many cycles. In this case, because the cycles share edges rather
than nodes, a compression on one cycle may adversely affect others.
Predicting interactions between the cycles is more computationally
difficult and was not explored. However, EQM can more closely
mimic the interaction graph’s connectivity on the architecture,
reducing the number of SWAP gates and increasing internal CX
interactions.

In the graph-based circuits, where each edge is weighted simi-
larly, no method clearly wins over the other strategies and we only
find up to 20% improvements in gate success rate. The most consis-
tent performer is still EQM, which almost never drops below the
corresponding qubit compilation success rate. On the other hand,
strategies that prioritize communication, such as AWE and PP, are
much more inconsistent. These strategies group qubits together
that reduce the distance to interact with more qubits. While this
might seem to decrease communication, it does not. Instead, qubits
are constantly shifted into positions where there is not much local-
ity to exploit. That is, highly-interacting qubits are not necessarily
placed close to one another, increasing the chance that commu-
nication will be required. These methods significantly reduce the
number of internal ququart operations and increase serialization of
communication due to both qubits in a pair being required indepen-
dently for communication. This is shown in Figure 8. The overall
numbers of gates are similar between EQM and AWE, but EQM uses
significantly more internal CX gates (red bars). AWE and PP tend to
use more SWAP gates (grey, green, and cyan bars) and many more
partial CX operations (orange and blue bars). EQM enables more
success rate improvement by prioritizing higher fidelity multi-qubit
operations rather before prioritizing communication reduction.

While communication reduction is important, it is difficult to pre-
dict prior to compressions being made and recompilation, and it is
more crucial to find the compressions that will increase internal CX
count early in the circuit with a general sense of global scope, and
leave the router to dynamically adapt to changing communication
costs.

Sensitivity to Better Qubit Error. It may not be the case that
ququart and qubit gates have identical error. As mentioned pre-
viously, ququart gates are more difficult to control and may have
lower fidelity in a real system. In Figure 9, we demonstrate how
strategies react to higher fidelity qubit-only gates for the Cuccaro
circuit and for the cylinder QAOA. The strategies maintain their

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada A. Litteken, M. Seifert, J. Chadwick, N. Nottingham, F. Chong, J. Baker

Figure 7: Expected Gate Probability of Success for each benchmark. Each color represents a a different compilation strategy,
where the black line is the exhaustive solution developed previously, and is the goal. FQ is the previous baseline for generalized
ququart computation.

Figure 8: The distribution of gate types for different pairing
strategies for a 30 qubit Torus QAOA circuit. Each color rep-
resents a different “style” of gates. In particular the darker
blue represents CX gates between two ququarts, and the red
represents an internal CX gate within a single ququart.

relationship to each other, but, as expected, see diminishing returns
as qubit error improves. However, there is some variability in the
pairing methods as the qubit error rate improves, as they attempt to
preference qubit operations as they become less error prone. Even
in these cases, the underlying architecture may be space limited
meaning we require larger hardware than required by amixed-radix
strategy.

7.1 Error Due to Circuit Duration
Ququart compressions have a downside. Each compression induces
serialization and requires the use of the longer partial ququart gate
times. In Figure 10, we explore how each compression strategy

Figure 9: Gate Expected Probability of Success as the qubit
gate error rate increases and the ququart error gate rate
stays constant. The black line represents the crossover point
where the error of the qubit only compilation is greater than
ququart compilation.

affects the error due to increasing circuit duration. As the circuit
duration increases, a qudit is more likely to decohere due to the
significantly worse 𝑇1 time. The probability of an entire system
maintaining coherence for a mixed-radix circuit is described asthe
product of 𝑒−𝑡𝑞𝑏/𝑇1𝑞𝑏−𝑡𝑞𝑑/𝑇1𝑞𝑑 for each qubit. 𝑡𝑞𝑏 is the time spent
in the qubit state and 𝑡𝑞𝑑 is the time spent in the ququart state, and
𝑇1𝑥 is the𝑇1 coherence time for the qudit in the noted state. We first
notice that we significantly improve upon the time incurred by FQ;
all other compression strategies are able to more effectively mitigate
circuit duration increases. Partial SWAP operations are faster than

Qompress: Efficient Compilation for Ququarts ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 10: Expected Coherence Probability of Success for each benchmark. Each color represents a a different compilation
strategy, where the black line is the exhaustive solution, and in theory ideal, developed previously. EC line stops short for
computational reasons, requiring many more classical resources. FQ is the previous baseline for generalized ququart compu-
tation.

Figure 11: Expected Coherence Probability of Success for
Cuccaro and Torus QAOAwith 10x better ququart and qubit
𝑇1 times.

full qudit SWAP operations and prevent extraneous communication.
We also find that EQM-based compression generally leads to the
best coherence probability of success. Furthermore we observe that,
in some cases, the highest gate probability of success does not
always match the best coherence probability of success. This is
due to the fact that some single-qubit and multi-qubit gates can no
longer be performed in parallel due to compression, significantly
contributing to the circuit duration. We also notice that we are able
to mostly match the duration found through exhaustive search of
critical path success rates.

However, a total success rate is the success rate via gate fidelity
product times the coherence time success rate, and at current 𝑇1
times (listed in Section 6) decoherence error outweighs the benefits

Figure 12: Expected Coherence Probability of Success for
several 25 qubit benchmarks with 10x better ququart and
qubit 𝑇1 times as the ququart time increases 𝑇1 from 1/3 the
qubit𝑇1 time to the entire qubit𝑇1 time. Each dashed line rep-
resents the point where the coherence success rate no longer
outweighs the gate success rate gains for the corresponding
circuit.

of success rate increases. We examine the coherence probability of
success for a Cuccaro circuit and Torus QAOA in Figure 11, with a
10x better T1 time for both qubits and ququarts. While the margin
between qubit and ququart circuits improves, it will still outweigh
the gate success.

However, the 1 : 3 ratio of 𝑇1 times used in this work is a worst
case scenario. Two qubits encoded in a ququart may not be in the
maximum |3⟩ state at all times, and will not be subject to the same

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada A. Litteken, M. Seifert, J. Chadwick, N. Nottingham, F. Chong, J. Baker

Figure 13: Ranges of gate based probability of success for
CNU and Cylinder QAOA on three different architectural
topologies. This is the combined set of ratios of improve-
ment for circuits sizes 5 to 40.

loss in 𝑇1 time at all points. Additionally, physically realized qutrit
devices have seen𝑇1 relationships that are better than the expected
1/2 reduction [8] and can be specifically designed to enhance the
expected decay rates for different energy levels. Using the circuit
durations found here, we plot the change in success rate due to
circuit duration as the ratio of 𝑇1 time changes in Figure 12. As the
𝑇1 for ququarts increases, we find that there is a point, the dashed
lines, before the 𝑇1 times are equal where the total success rate
is improved with ququarts. In these instances, ququarts would be
expected to perform better than qubits. While it is difficult to avoid
an increase in circuit duration, with enough gains through internal
CX gates and SWAP count reduction, encoding qubits into ququarts
has the ability to extend what can be computed on a device and
perform with better expected probability of success.

7.2 Computation on Lower Connectivity
Most quantum architectures, especially superconducting devices,
have much lower connectivity than the grid architecture we as-
sumed. As described in Section 6, we also test our methods on the
IBM Ithaca topology and a similarly sized ring-based topology. We
describe the range of critical path fidelity improvement for some
circuits in Figure 13. The patterns shown are consistent across all
benchmarks. We do not see any significant difference in perfor-
mance between architectures. This is expected. We use the similar
routing steps for both qubits and ququarts, the main difference
being that the connectivity is slightly expanded for the ququart
routing. Our methods can successfully adapt to different structures
with similar effects for each.

8 DISCUSSION AND CONCLUSION
Architectural size is a huge limitation on useful computation on
quantum computers, and many architectural models for quantum
architectures have access to higher level states. These higher level
states can be used to compress quantum information. In the case
of ququarts, two qubits can be fit into a single physical unit in
a process we call compression. There are difficulties in working
with these more complex objects such as shorter coherence times,
and longer gate times work against each other to make ququart
compilation challenging.

In this work, we explicitly realize a gate set for mixed qubit-
ququart systems including partial operations, without the need

to encode and decode ququarts. With a gate set designed specifi-
cally for ququart computation and communication, we design and
evaluate a compiler to mitigate time-intensive ququart-ququart
interactions and the increased gate-based communication required
to interact two ququarts in past models. Our compiler also exploits
higher qubit connectivity and reduces the count of needed physical
units to execute programs requiring more qubits than available.
By mitigating this cost, we explore the best way to take advan-
tage of faster operations, such as internal CX gates, enabled by
encoding multiple qubits in the same physical unit. We develop
several strategies that emphasize the need to prioritize these fast
interactions and exploit the locality of certain circuit structures for
better gate expected probability of success, and lower increases in
circuit duration.

We demonstrate the potential of ququart logic as a valuable tool
in making quantum devices more useful in the future. We show the
potential for doubling the number of qubits available for execution,
and guide future device engineering and architectural development
to prioritize these higher energy states.

ACKNOWLEDGMENTS
This work is funded in part by EPiQC, an NSF Expedition in Com-
puting, under award CCF-1730449; in part by STAQ under award
NSF Phy-1818914; in part by NSF award 2110860; in part by the US
Department of Energy Office of Advanced Scientific Computing
Research, Accelerated Research for Quantum Computing Program;
and in part by the NSF Quantum Leap Challenge Institute for Hy-
brid Quantum Architectures and Networks (NSF Award 2016136)
and in part based upon work supported by the U.S. Department of
Energy, Office of Science, National Quantum Information Science
Research Centers. FTC is Chief Scientist for Quantum Software at
ColdQuanta and an advisor to Quantum Circuits, Inc.

We would like to thank Casey Duckering for his input in early
discussion of compiler development for ququarts. We would like
to thank Stefanie Günther and N. Anders Petersson for valuable
advice on using the quantum optimal control software packages
Juqbox and Quandary. Additionally, we would like to thank David I.
Schuster for helpful discussions regarding quantum optimal control
theory.

This work was completed in part with resources provided by the
University of Chicago’s Research Computing Center.

REFERENCES
[1] [n. d.]. David Schuster Lab. http://schusterlab.uchicago.edu. Accessed: 2022-10-

21.
[2] Mohamed Abdelhafez, Brian Baker, András Gyenis, Pranav Mundada, Andrew A.

Houck, David Schuster, and Jens Koch. 2020. Universal gates for protected
superconducting qubits using optimal control. Phys. Rev. A 101, 2 (Feb. 2020),
022321. https://doi.org/10.1103/PhysRevA.101.022321 Publisher: American
Physical Society.

[3] MD SAJID ANIS, Abby-Mitchell, Héctor Abraham, AduOffei, Rochisha Agar-
wal, Gabriele Agliardi, Merav Aharoni, Vishnu Ajith, Ismail Yunus Akhalwaya,
Gadi Aleksandrowicz, Thomas Alexander, Matthew Amy, Sashwat Anagolum,
Anthony-Gandon, Eli Arbel, Abraham Asfaw, Anish Athalye, Artur Avkhadiev,
Carlos Azaustre, PRATHAMESH BHOLE, Abhik Banerjee, Santanu Banerjee, Will
Bang, Aman Bansal, Panagiotis Barkoutsos, Ashish Barnawal, George Barron,
George S. Barron, Luciano Bello, Yael Ben-Haim, M. Chandler Bennett, Daniel
Bevenius, Dhruv Bhatnagar, Prakhar Bhatnagar, Arjun Bhobe, Paolo Bianchini,
Lev S. Bishop, Carsten Blank, Sorin Bolos, Soham Bopardikar, Samuel Bosch,
Sebastian Brandhofer, Brandon, Sergey Bravyi, Nick Bronn, Bryce-Fuller, David
Bucher, Artemiy Burov, Fran Cabrera, Padraic Calpin, Lauren Capelluto, Jorge

http://schusterlab.uchicago.edu
https://doi.org/10.1103/PhysRevA.101.022321

Qompress: Efficient Compilation for Ququarts ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Carballo, Ginés Carrascal, Adam Carriker, Ivan Carvalho, Adrian Chen, Chun-Fu
Chen, Edward Chen, Jielun (Chris) Chen, Richard Chen, Franck Chevallier, Kartik
Chinda, Rathish Cholarajan, JerryM. Chow, Spencer Churchill, CisterMoke, Chris-
tian Claus, Christian Clauss, Caleb Clothier, Romilly Cocking, Ryan Cocuzzo, Jor-
dan Connor, Filipe Correa, Zachary Crockett, Abigail J. Cross, Andrew W. Cross,
Simon Cross, Juan Cruz-Benito, Chris Culver, Antonio D. Córcoles-Gonzales,
Navaneeth D, Sean Dague, Tareq El Dandachi, Animesh N. Dangwal, Jonathan
Daniel, Marcus Daniels, Matthieu Dartiailh, Abdón Rodríguez Davila, Faisal De-
bouni, Anton Dekusar, Amol Deshmukh, Mohit Deshpande, Delton Ding, Jun
Doi, Eli M. Dow, Patrick Downing, Eric Drechsler, Eugene Dumitrescu, Karel Du-
mon, Ivan Duran, Kareem EL-Safty, Eric Eastman, Grant Eberle, Amir Ebrahimi,
Pieter Eendebak, Daniel Egger, ElePT, Emilio, Alberto Espiricueta, Mark Everitt,
Davide Facoetti, Farida, Paco Martín Fernández, Samuele Ferracin, Davide Ferrari,
Axel Hernández Ferrera, Romain Fouilland, Albert Frisch, Andreas Fuhrer, Bryce
Fuller, MELVIN GEORGE, Julien Gacon, Borja Godoy Gago, Claudio Gambella,
Jay M. Gambetta, Adhisha Gammanpila, Luis Garcia, Tanya Garg, Shelly Garion,
James R. Garrison, Jim Garrison, Tim Gates, Hristo Georgiev, Leron Gil, Austin
Gilliam, Aditya Giridharan, Glen, Juan Gomez-Mosquera, Gonzalo, Salvador de
la Puente González, Jesse Gorzinski, Ian Gould, Donny Greenberg, Dmitry Grinko,
Wen Guan, Dani Guijo, John A. Gunnels, Harshit Gupta, Naman Gupta, Jakob M.
Günther, Mikael Haglund, Isabel Haide, Ikko Hamamura, Omar Costa Hamido,
Frank Harkins, Kevin Hartman, Areeq Hasan, Vojtech Havlicek, Joe Hellmers,
\Lukasz Herok, Stefan Hillmich, Hiroshi Horii, Connor Howington, Shaohan Hu,
Wei Hu, Chih-Han Huang, Junye Huang, Rolf Huisman, Haruki Imai, Takashi
Imamichi, Kazuaki Ishizaki, Ishwor, Raban Iten, Toshinari Itoko, Alexander Ivrii,
Ali Javadi, Ali Javadi-Abhari, Wahaj Javed, Qian Jianhua, Madhav Jivrajani, Ki-
ran Johns, Scott Johnstun, Jonathan-Shoemaker, JosDenmark, JoshDumo, John
Judge, Tal Kachmann, Akshay Kale, Naoki Kanazawa, Jessica Kane, Kang-Bae, An-
nanay Kapila, Anton Karazeev, Paul Kassebaum, Tobias Kehrer, Josh Kelso, Scott
Kelso, Hugo van Kemenade, Vismai Khanderao, Spencer King, Yuri Kobayashi,
Kovi11Day, Arseny Kovyrshin, Rajiv Krishnakumar, Pradeep Krishnamurthy,
Vivek Krishnan, Kevin Krsulich, Prasad Kumkar, Gawel Kus, Ryan LaRose, En-
rique Lacal, Raphaël Lambert, Haggai Landa, John Lapeyre, Joe Latone, Scott
Lawrence, Christina Lee, Gushu Li, Tan Jun Liang, Jake Lishman, Dennis Liu, Peng
Liu, Lolcroc, Abhishek K. M, Liam Madden, Yunho Maeng, Saurav Maheshkar,
KahanMajmudar, Aleksei Malyshev, Mohamed El Mandouh, JoshuaManela, Man-
jula, Jakub Marecek, Manoel Marques, Kunal Marwaha, Dmitri Maslov, Pawe\l
Maszota, Dolph Mathews, Atsushi Matsuo, Farai Mazhandu, Doug McClure,
Maureen McElaney, Cameron McGarry, David McKay, Dan McPherson, Srujan
Meesala, Dekel Meirom, Corey Mendell, Thomas Metcalfe, Martin Mevissen,
Andrew Meyer, Antonio Mezzacapo, Rohit Midha, Daniel Miller, Hannah Miller,
Zlatko Minev, Abby Mitchell, Nikolaj Moll, Alejandro Montanez, Gabriel Mon-
teiro, Michael Duane Mooring, Renier Morales, Niall Moran, David Morcuende,
Seif Mostafa, Mario Motta, Romain Moyard, Prakash Murali, Daiki Murata,
Jan Müggenburg, Tristan NEMOZ, David Nadlinger, Ken Nakanishi, Giacomo
Nannicini, Paul Nation, Edwin Navarro, Yehuda Naveh, Scott Wyman Neagle,
Patrick Neuweiler, Aziz Ngoueya, Thien Nguyen, Johan Nicander, Nick-Singstock,
Pradeep Niroula, Hassi Norlen, NuoWenLei, Lee James O’Riordan, Oluwatobi
Ogunbayo, Pauline Ollitrault, Tamiya Onodera, Raul Otaolea, Steven Oud, Dan
Padilha, Hanhee Paik, Soham Pal, Yuchen Pang, Ashish Panigrahi, Vincent R.
Pascuzzi, Simone Perriello, Eric Peterson, Anna Phan, Kuba Pilch, Francesco Piro,
Marco Pistoia, Christophe Piveteau, Julia Plewa, Pierre Pocreau, Alejandro Pozas-
Kerstjens, Rafa\l Pracht, Milos Prokop, Viktor Prutyanov, Sumit Puri, Daniel Puz-
zuoli, Pythonix, Jesús Pérez, Quant02, Quintiii, Rafey Iqbal Rahman, Arun Raja,
Roshan Rajeev, Isha Rajput, Nipun Ramagiri, Anirudh Rao, Rudy Raymond, Oliver
Reardon-Smith, Rafael Martín-Cuevas Redondo, Max Reuter, Julia Rice, Matt
Riedemann, Rietesh, DrewRisinger, Pedro Rivero,Marcello La Rocca, DiegoM. Ro-
dríguez, RohithKarur, Ben Rosand, Max Rossmannek, Mingi Ryu, Tharrmashastha
SAPV, Nahum Rosa Cruz Sa, Arijit Saha, Abdullah Ash Saki, Sankalp Sanand, Mar-
tin Sandberg, Hirmay Sandesara, Ritvik Sapra, Hayk Sargsyan, Aniruddha Sarkar,
Ninad Sathaye, Niko Savola, Bruno Schmitt, Chris Schnabel, Zachary Schoen-
feld, Travis L. Scholten, Eddie Schoute, Mark Schulterbrandt, Joachim Schwarm,
James Seaward, Sergi, Ismael Faro Sertage, Kanav Setia, Freya Shah, Nathan
Shammah, Will Shanks, Rohan Sharma, Yunong Shi, Jonathan Shoemaker, Ade-
nilton Silva, Andrea Simonetto, Deeksha Singh, Divyanshu Singh, Parmeet Singh,
Phattharaporn Singkanipa, Yukio Siraichi, Siri, Jesús Sistos, Iskandar Sitdikov,
Seyon Sivarajah, Slavikmew, Magnus Berg Sletfjerding, John A. Smolin, Mathias
Soeken, Igor Olegovich Sokolov, Igor Sokolov, Vicente P. Soloviev, SooluThomas,
Starfish, Dominik Steenken, Matt Stypulkoski, Adrien Suau, Shaojun Sun, Kevin J.
Sung, Makoto Suwama, Oskar S\lowik, Hitomi Takahashi, Tanvesh Takawale,
Ivano Tavernelli, Charles Taylor, Pete Taylour, Soolu Thomas, Kevin Tian, Math-
ieu Tillet, Maddy Tod, Miroslav Tomasik, Caroline Tornow, Enrique de la Torre,
Juan Luis Sánchez Toural, Kenso Trabing, Matthew Treinish, Dimitar Trenev,
TrishaPe, Felix Truger, Georgios Tsilimigkounakis, Davindra Tulsi, Doğukan
Tuna, Wes Turner, Yotam Vaknin, Carmen Recio Valcarce, Francois Varchon,
Adish Vartak, Almudena Carrera Vazquez, Prajjwal Vijaywargiya, Victor Villar,
Bhargav Vishnu, Desiree Vogt-Lee, Christophe Vuillot, James Weaver, Johannes
Weidenfeller, Rafal Wieczorek, Jonathan A. Wildstrom, Jessica Wilson, Erick

Winston, WinterSoldier, Jack J. Woehr, Stefan Woerner, Ryan Woo, Christopher J.
Wood, Ryan Wood, Steve Wood, James Wootton, Matt Wright, Lucy Xing, Jin-
tao YU, Bo Yang, Unchun Yang, Jimmy Yao, Daniyar Yeralin, Ryota Yonekura,
David Yonge-Mallo, Ryuhei Yoshida, Richard Young, Jessie Yu, Lebin Yu, Yuma-
Nakamura, Christopher Zachow, Laura Zdanski, Helena Zhang, Iulia Zidaru,
Bastian Zimmermann, Christa Zoufal, aeddins-ibm, alexzhang13, b63, bartek-
bartlomiej, bcamorrison, brandhsn, chetmurthy, deeplokhande, dekel.meirom,
dime10, dlasecki, ehchen, ewinston, fanizzamarco, fs1132429, gadial, galeinston,
georgezhou20, georgios-ts, gruu, hhorii, hhyap, hykavitha, itoko, jeppevinkel,
jessica-angel7, jezerjojo14, jliu45, johannesgreiner, jscott2, klinvill, krutik2966,
ma5x, michelle4654, msuwama, nico-lgrs, nrhawkins, ntgiwsvp, ordmoj, sagar
pahwa, pritamsinha2304, rithikaadiga, ryancocuzzo, saktar-unr, saswati-qiskit,
septembrr, sethmerkel, sg495, shaashwat, smturro2, sternparky, strickroman,
tigerjack, tsura-crisaldo, upsideon, vadebayo49, welien, willhbang, wmurphy-
collabstar, yang.luh, and Mantas Čepulkovskis. 2021. Qiskit: An Open-source
Framework for Quantum Computing. https://doi.org/10.5281/zenodo.2573505

[4] Jonathan M Baker, Casey Duckering, and Frederic T Chong. 2020. Efficient
quantum circuit decompositions via intermediate qudits. In 2020 IEEE 50th Inter-
national Symposium on Multiple-Valued Logic (ISMVL). IEEE, 303–308.

[5] Jonathan M Baker, Casey Duckering, Pranav Gokhale, Natalie C Brown, Ken-
neth R Brown, and Frederic T Chong. 2020. Improved quantum circuits via
intermediate qutrits. ACM Transactions on Quantum Computing 1, 1 (2020), 1–25.
Publisher: ACM New York, NY, USA.

[6] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Nor-
man Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter.
1995. Elementary gates for quantum computation. Physical Review A 52, 5 (Nov.
1995), 3457–3467. https://doi.org/10.1103/PhysRevA.52.3457

[7] Ethan Bernstein and Umesh Vazirani. 1997. QuantumComplexity Theory. SIAM J.
Comput. 26, 5 (Oct. 1997), 1411–1473. https://doi.org/10.1137/S0097539796300921

[8] M. S. Blok, V. V. Ramasesh, T. Schuster, K. O’Brien, J. M. Kreikebaum, D. Dahlen,
A. Morvan, B. Yoshida, N. Y. Yao, and I. Siddiqi. 2021. Quantum Information
Scrambling in a Superconducting Qutrit Processor. Physical Review X 11, 2 (April
2021), 021010. https://doi.org/10.1103/PhysRevX.11.021010 arXiv:2003.03307
[quant-ph].

[9] Alex Bocharov, Shawn X. Cui, Martin Roetteler, and Krysta M. Svore. 2016.
Improved Quantum Ternary Arithmetics. (June 2016). https://doi.org/10.48550/
arXiv.1512.03824 arXiv:1512.03824 [quant-ph] type: article.

[10] Alex Bocharov, Martin Roetteler, and Krysta M. Svore. 2017. Factoring with
qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures.
Physical Review A 96, 1 (July 2017), 012306. https://doi.org/10.1103/PhysRevA.96.
012306 Publisher: American Physical Society.

[11] Alba Cervera-Lierta, Mario Krenn, Alá n Aspuru-Guzik, and Alexey Galda. 2022.
Experimental High-Dimensional Greenberger-Horne-Zeilinger Entanglement
with Superconducting Transmon Qutrits. Physical Review Applied 17, 2 (Feb.
2022). https://doi.org/10.1103/physrevapplied.17.024062 Publisher: American
Physical Society (APS).

[12] Yulin Chi, Jieshan Huang, Zhanchuan Zhang, Jun Mao, Zinan Zhou, Xiaojiong
Chen, Chonghao Zhai, Jueming Bao, Tianxiang Dai, Huihong Yuan, Ming Zhang,
Daoxin Dai, Bo Tang, Yan Yang, Zhihua Li, Yunhong Ding, Leif K. Oxenløwe,
Mark G. Thompson, Jeremy L. O’Brien, Yan Li, Qihuang Gong, and Jianwei Wang.
2022. A programmable qudit-based quantum processor. Nature Communications
13, 1 (Dec. 2022), 1166. https://doi.org/10.1038/s41467-022-28767-x

[13] Sung Un Cho, Myung-Ho Bae, Kicheon Kang, and Nam Kim. 2015. Tunable
superconducting qudit mediated by microwave photons. AIP Advances 5, 8 (Aug.
2015), 087186. https://doi.org/10.1063/1.4930103

[14] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will
Simmons, and Seyon Sivarajah. 2019. On the qubit routing problem. arXiv
preprint arXiv:1902.08091 (2019).

[15] Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and David PetrieMoulton.
2004. A new quantum ripple-carry addition circuit. https://doi.org/10.48550/
ARXIV.QUANT-PH/0410184

[16] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approxi-
mate Optimization Algorithm. https://doi.org/10.48550/ARXIV.1411.4028

[17] Alexey Galda, Michael Cubeddu, Naoki Kanazawa, Prineha Narang, and Nathan
Earnest-Noble. 2021. Implementing a Ternary Decomposition of the Toffoli Gate
on Fixed-Frequency TransmonQutrits. https://doi.org/10.48550/arXiv.2109.00558
arXiv:2109.00558 [quant-ph].

[18] Jay Gambetta. 2022. Expanding the IBM Quantum roadmap to anticipate the
future of quantum-centric supercomputing. https://research.ibm.com/blog/ibm-
quantum-roadmap-2025?social_post=6953094465&linkId=164428745

[19] K. Geerlings, Z. Leghtas, I. M. Pop, S. Shankar, L. Frunzio, R. J. Schoelkopf, M.
Mirrahimi, and M. H. Devoret. 2013. Demonstrating a Driven Reset Protocol
for a Superconducting Qubit. Phys. Rev. Lett. 110, 12 (March 2013), 120501.
https://doi.org/10.1103/PhysRevLett.110.120501 Publisher: American Physical
Society.

[20] Pranav Gokhale, Jonathan M. Baker, Casey Duckering, Natalie C. Brown, Ken-
neth R. Brown, and Frederic T. Chong. 2019. Asymptotic improvements to
quantum circuits via qutrits. In Proceedings of the 46th International Symposium

https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1103/PhysRevX.11.021010
https://doi.org/10.48550/arXiv.1512.03824
https://doi.org/10.48550/arXiv.1512.03824
https://doi.org/10.1103/PhysRevA.96.012306
https://doi.org/10.1103/PhysRevA.96.012306
https://doi.org/10.1103/physrevapplied.17.024062
https://doi.org/10.1038/s41467-022-28767-x
https://doi.org/10.1063/1.4930103
https://doi.org/10.48550/ARXIV.QUANT-PH/0410184
https://doi.org/10.48550/ARXIV.QUANT-PH/0410184
https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.48550/arXiv.2109.00558
https://research.ibm.com/blog/ibm-quantum-roadmap-2025?social_post=6953094465&linkId=164428745
https://research.ibm.com/blog/ibm-quantum-roadmap-2025?social_post=6953094465&linkId=164428745
https://doi.org/10.1103/PhysRevLett.110.120501

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada A. Litteken, M. Seifert, J. Chadwick, N. Nottingham, F. Chong, J. Baker

on Computer Architecture. ACM. https://doi.org/10.1145/3307650.3322253
[21] Pranav Gokhale, Samantha Koretsky, Shilin Huang, Swarnadeep Majumder, An-

drew Drucker, Kenneth R. Brown, and Frederic T. Chong. 2020. Quantum Fan-
out: Circuit Optimizations and Technology Modeling. https://doi.org/10.48550/
ARXIV.2007.04246

[22] Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search.
Technical Report arXiv:quant-ph/9605043. arXiv. https://doi.org/10.48550/arXiv.
quant-ph/9605043 arXiv:quant-ph/9605043 type: article.

[23] Stefanie Günther, N. Anders Petersson, and Jonathan L. DuBois. 2021. Quan-
tum Optimal Control for Pure-State Preparation Using One Initial State.
arXiv:2106.09148 [quant-ph] (Aug. 2021). http://arxiv.org/abs/2106.09148 arXiv:
2106.09148.

[24] Alex Hill. 2021. Beyond Qubits: Unlocking the Third State in Quantum Proces-
sors. https://medium.com/rigetti/beyond-qubits-unlocking-the-third-state-in-
quantum-processors-12d2f84133c4

[25] Yuichi Hirata, Masaki Nakanishi, Shigeru Yamashita, and Yasuhiko Nakashima.
2011. An efficient conversion of quantum circuits to a linear nearest neighbor
architecture. Quantum Information and Computation 11, 1 (2011), 142.

[26] A. A. Houck, Jens Koch, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. 2009.
Life after charge noise: recent results with transmon qubits. Quantum Information
Processing 8, 2-3 (June 2009), 105–115. https://doi.org/10.1007/s11128-009-0100-6

[27] Sven Jandura. 2018. Improving a Quantum Compiler. https://medium.com/
qiskit/improving-a-quantum-compiler-48410d7a7084 Publication Title: Qiskit
Blog.

[28] Navin Khaneja, Timo Reiss, Cindie Kehlet, Thomas Schulte-Herbrüggen, and
Steffen J. Glaser. 2005. Optimal control of coupled spin dynamics: design of NMR
pulse sequences by gradient ascent algorithms. Journal of Magnetic Resonance
172, 2 (Feb. 2005), 296–305. https://doi.org/10.1016/j.jmr.2004.11.004

[29] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer,
Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. 2007. Charge-
insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 4 (Oct.
2007), 042319. https://doi.org/10.1103/PhysRevA.76.042319 Publisher: American
Physical Society.

[30] Rajath Krishna, Vishesh Makwana, and Ananda Padhmanabhan Suresh. 2016.
A Generalization of Bernstein-Vazirani Algorithm to Qudit Systems. https:
//doi.org/10.48550/ARXIV.1609.03185

[31] Andrew Litteken, Jonathan M. Baker, and Frederic T. Chong. 2022. Communica-
tion Trade Offs in Intermediate Qudit Circuits. In 2022 IEEE 52nd International
Symposium on Multiple-Valued Logic (ISMVL). IEEE, Dallas, TX, USA, 43–49.
https://doi.org/10.1109/ISMVL52857.2022.00014

[32] Seth Lloyd and Reevu Maity. 2019. Efficient implementation of unitary transfor-
mations. arXiv:1901.03431 [quant-ph] (Jan. 2019). http://arxiv.org/abs/1901.03431
arXiv: 1901.03431.

[33] Erik Lucero, M. Hofheinz, M. Ansmann, Radoslaw C. Bialczak, N. Katz, Matthew
Neeley, A. D. O’Connell, H.Wang, A. N. Cleland, and JohnM.Martinis. 2008. High-
Fidelity Gates in a Single Josephson Qubit. Phys. Rev. Lett. 100, 24 (June 2008),
247001. https://doi.org/10.1103/PhysRevLett.100.247001 Publisher: American
Physical Society.

[34] Prakash Murali, Jonathan M. Baker, Ali Javadi Abhari, Frederic T. Chong, and
Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy
Intermediate-Scale Quantum Computers. https://doi.org/10.48550/ARXIV.1901.

11054
[35] N. Anders Petersson and Fortino Garcia. 2021. Optimal Control of Closed Quan-

tum Systems via B-Splines with Carrier Waves. arXiv:2106.14310 [quant-ph] (June
2021). http://arxiv.org/abs/2106.14310 arXiv: 2106.14310.

[36] N. Anders Petersson, Fortino M. Garcia, Austin E. Copeland, Ylva L. Rydin, and
Jonathan L. DuBois. 2020. Discrete Adjoints for Accurate Numerical Optimization
with Application to Quantum Control. arXiv:2001.01013 [quant-ph] (Nov. 2020).
http://arxiv.org/abs/2001.01013 arXiv: 2001.01013.

[37] IBM Quantum. [n. d.]. IBM Unveils Breakthrough 127-Qubit Quantum
Processor. https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-
127-Qubit-Quantum-Processor. https://newsroom.ibm.com/2021-11-16-IBM-
Unveils-Breakthrough-127-Qubit-Quantum-Processor

[38] Martin Ringbauer, Michael Meth, Lukas Postler, Roman Stricker, Rainer Blatt,
Philipp Schindler, and Thomas Monz. 2021. A universal qudit quantum processor
with trapped ions. Technical Report arXiv:2109.06903. arXiv. https://doi.org/10.
48550/arXiv.2109.06903 arXiv:2109.06903 [quant-ph] type: article.

[39] Lennart Maximilian Seifert, Jason Chadwick, Andrew Litteken, Frederic T. Chong,
and Jonathan M. Baker. 2022. Time-Efficient Qudit Gates through Incremental
Pulse Re-seeding. Technical Report arXiv:2206.14975. arXiv. http://arxiv.org/abs/
2206.14975 arXiv:2206.14975 [quant-ph] type: article.

[40] Sarah Sheldon, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. 2016.
Procedure for systematically tuning up cross-talk in the cross-resonance gate.
Physical Review A 93, 6 (June 2016), 060302. https://doi.org/10.1103/PhysRevA.
93.060302

[41] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (Oct. 1997),
1484–1509. https://doi.org/10.1137/S0097539795293172 arXiv:quant-ph/9508027.

[42] Shlomo E. Sklarz and David J. Tannor. 2002. Loading a Bose-Einstein condensate
onto an optical lattice: An application of optimal control theory to the nonlinear
Schr\"odinger equation. Physical Review A 66, 5 (Nov. 2002), 053619. https:
//doi.org/10.1103/PhysRevA.66.053619 Publisher: American Physical Society.

[43] Samuel Stein, Nathan Wiebe, Yufei Ding, Peng Bo, Karol Kowalski, Nathan
Baker, James Ang, and Ang Li. 2022. EQC: ensembled quantum computing for
variational quantum algorithms. In Proceedings of the 49th Annual International
Symposium on Computer Architecture. ACM, New York New York, 59–71. https:
//doi.org/10.1145/3470496.3527434

[44] Swamit S Tannu and Moinuddin Qureshi. 2019. Ensemble of diverse mappings:
Improving reliability of quantum computers by orchestrating dissimilar mis-
takes. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. 253–265.

[45] Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateS-
pace, Scotts Valley, CA.

[46] Yushi Wang and Marek Perkowski. 2011. Improved complexity of quantum
oracles for ternary grover algorithm for graph coloring. In 2011 41st IEEE Inter-
national Symposium on Multiple-Valued Logic. IEEE, 294–301.

[47] Robert Wille, Oliver Keszocze, Marcel Walter, Patrick Rohrs, Anupam Chat-
topadhyay, and Rolf Drechsler. 2016. Look-ahead schemes for nearest neighbor
optimization of 1D and 2D quantum circuits. In 2016 21st Asia and South Pacific
design automation conference (ASP-DAC). IEEE, 292–297.

Received 2022-07-07; accepted 2022-09-22

https://doi.org/10.1145/3307650.3322253
https://doi.org/10.48550/ARXIV.2007.04246
https://doi.org/10.48550/ARXIV.2007.04246
https://doi.org/10.48550/arXiv.quant-ph/9605043
https://doi.org/10.48550/arXiv.quant-ph/9605043
http://arxiv.org/abs/2106.09148
https://medium.com/rigetti/beyond-qubits-unlocking-the-third-state-in-quantum-processors-12d2f84133c4
https://medium.com/rigetti/beyond-qubits-unlocking-the-third-state-in-quantum-processors-12d2f84133c4
https://doi.org/10.1007/s11128-009-0100-6
https://medium.com/qiskit/improving-a-quantum-compiler-48410d7a7084
https://medium.com/qiskit/improving-a-quantum-compiler-48410d7a7084
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.48550/ARXIV.1609.03185
https://doi.org/10.48550/ARXIV.1609.03185
https://doi.org/10.1109/ISMVL52857.2022.00014
http://arxiv.org/abs/1901.03431
https://doi.org/10.1103/PhysRevLett.100.247001
https://doi.org/10.48550/ARXIV.1901.11054
https://doi.org/10.48550/ARXIV.1901.11054
http://arxiv.org/abs/2106.14310
http://arxiv.org/abs/2001.01013
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
https://doi.org/10.48550/arXiv.2109.06903
https://doi.org/10.48550/arXiv.2109.06903
http://arxiv.org/abs/2206.14975
http://arxiv.org/abs/2206.14975
https://doi.org/10.1103/PhysRevA.93.060302
https://doi.org/10.1103/PhysRevA.93.060302
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1103/PhysRevA.66.053619
https://doi.org/10.1103/PhysRevA.66.053619
https://doi.org/10.1145/3470496.3527434
https://doi.org/10.1145/3470496.3527434

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Computing
	2.2 Higher Radix Computation
	2.3 Quantum Optimal Control
	2.4 Related Work

	3 Qudit Pulse Generation
	3.1 Compression and Gate Set
	3.2 Device Model
	3.3 Optimizing Pulses
	3.4 Qudit Gate Durations
	3.5 Technical Barriers

	4 Qompress: Compilation with Partial Operations
	4.1 Representing a Ququart Architecture
	4.2 Extending Mapping, Routing, and Scheduling

	5 Qubit Compression Strategies
	5.1 Exhaustive Compression (EC)
	5.2 Extended Qubit Mapping (EQM)
	5.3 Ring Based (RB)
	5.4 Average Weight per Edge (AWE)
	5.5 Progressive Pairing (PP)

	6 Evaluation Methods
	6.1 Architectures
	6.2 Baselines
	6.3 Benchmarking

	7 Results
	7.1 Error Due to Circuit Duration
	7.2 Computation on Lower Connectivity

	8 Discussion and Conclusion
	Acknowledgments
	References

