
SWIPER: Minimizing Fault-TolerantQuantum Program Latency
via Speculative Window Decoding

Joshua Viszlai∗†
University of Chicago
Chicago, Illinois, USA
viszlai@uchicago.edu

Jason D. Chadwick∗
University of Chicago
Chicago, Illinois, USA

jchadwick@uchicago.edu

Sarang Joshi
University of Chicago
Chicago, Illinois, USA
sarangj@uchicago.edu

Gokul Subramanian Ravi
University of Michigan

Ann Arbor, Michigan, USA
gsravi@umich.edu

Yanjing Li
University of Chicago
Chicago, Illinois, USA
yanjingl@uchicago.edu

Frederic T. Chong
University of Chicago
Chicago, Illinois, USA
chong@cs.uchicago.edu

Abstract
Real-time decoding is a key ingredient in future fault-tolerant quan-
tum systems, yet many decoders are too slow to run in real time.
Prior work has shown that parallel window decoding can scal-
ably meet throughput requirements in the presence of increasing
decoding times. However, windowed decoding require that some
decoding tasks be delayed until others have completed, which can
be problematic during time-sensitive operations such as T gate
teleportation, leading to suboptimal program runtimes. To alleviate
this, we introduce SWIPER, a speculative window decoder. Taking
inspiration from branch prediction in classical computer architec-
ture, SWIPER utilizes a light-weight speculation step to predict data
dependencies between adjacent decoding windows, allowing multi-
ple layers of decoding tasks to be resolved simultaneously. Through
a state-of-the-art compilation pipeline and a detailed open-source
simulator, we find that SWIPER reduces application runtimes by
40% on average compared to prior parallel window decoders.

CCS Concepts
• Computer systems organization→ Quantum computing.

Keywords
Quantum Computing, Quantum Error Correction, Surface Code,
Decoding, Window Decoding, Lattice Surgery

ACM Reference Format:
Joshua Viszlai, Jason D. Chadwick, Sarang Joshi, Gokul Subramanian Ravi,
Yanjing Li, and Frederic T. Chong. 2025. SWIPER: Minimizing Fault-Tolerant
Quantum Program Latency via Speculative Window Decoding. In Proceed-
ings of the 52nd Annual International Symposium on Computer Architec-
ture (ISCA ’25), June 21–25, 2025, Tokyo, Japan. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3695053.3731022

T Gate
Reaction Time

� Verify Speculation

Speculated Boundary
Result

Buffer
Region Idle S

time

2

4

3

Dependent on
Window 3

Complete Boundary
Result

2

4

3

4

SWIPER

2

No Speculation

3

Prior Work

Introduces Speculation

Key:

MZZ

S

Idle

X

(a) (b)

4

3
2 �

�

Figure 1: (a) Decoding a lattice surgery T gate teleportation
(top left) using prior parallel window decoders (middle) and
using SWIPER (bottom). (b) Resulting decoding pipelines.
SWIPER improves decoding throughput with a lightweight
speculation step, allowing dependent windows to begin de-
coding earlier.

1 Introduction
Quantum computers are poised to deliver computational speedups
for problems intractable classically. It is known that many of these
problems, such as quantum chemistry and factoring, will require
fault-tolerant systems to translate noisy physical qubits into re-
silient logical qubits via quantum error correcting (QEC) codes. A
critical component in the realization of QEC is the decoder, which
∗Both authors contributed equally to this research.
†Correspondance: viszlai@uchicago.edu

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3731022

1386

https://orcid.org/0009-0002-3560-9177
https://orcid.org/0000-0002-7932-1418
https://orcid.org/0009-0009-6594-7303
https://orcid.org/0000-0002-2334-2682
https://orcid.org/0000-0003-0124-0463
https://orcid.org/0000-0001-9282-4645
https://doi.org/10.1145/3695053.3731022
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731022
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3695053.3731022&domain=pdf&date_stamp=2025-06-20

ISCA ’25, June 21–25, 2025, Tokyo, Japan Joshua Viszlai, Jason D. Chadwick, Sarang Joshi, Gokul Subramanian Ravi, Yanjing Li, and Frederic T. Chong

must operate in real time with the quantum device. Through classi-
cal algorithms acting on streams of parity check data, the decoder
effectively tracks the state of error on logical qubits. A leading
proposal for decoding a long-running quantum computation is to
decodewindows of parity check data as they are generated. Adjacent
windows must pass completed decoding data across window bound-
aries to create a global solution. In the first proposal from Dennis et
al. [20], known as sliding window decoding, data is passed forward
in time, creating sequentially dependent decoding problems.

Although an accurate decoding system is necessary to enable
QEC, its speed also has strong implications for the success of the
quantum computation. Terhal points out that if the rate of data
production is higher than the rate of data decoding, then the com-
putation will experience an exponential slowdown [58] in the slid-
ing window setting due to an accumulating backlog of decoding
tasks that all depend on their predecessors. In response, research
has broadly improved decoder performance through a combina-
tion of algorithmic innovations [18, 34, 64] and tailored optimiza-
tions [3, 48, 62]. However, when addressing the backlog problem, it
is important to clarify decoder throughput versus decoder latency.
Decoder throughput is the rate at which information is decoded,
whereas decoder latency is the time taken to actively decode a
single problem. Innovations and optimizations in latency are im-
portant and, in turn, increase throughput. However, as discussed by
Skoric et al. [55] and Tan et al. [56] the decoding backlog is primar-
ily a throughput problem. The parallel window decoding strategies
that they propose show how throughput requirements can be scal-
ably met while remaining agnostic to the underlying decoding
latency. In parallel window decoding, the direction of data move-
ment between windows is modified, partitioning windows into two
alternating layers. Windows in the same layer are independent and
can therefore be decoded in parallel. This removes long dependency
chains inherent to sliding window decoding, and as a result, given
enough classical decoders to operate in parallel, the throughput of
the decoding system can be arbitrarily high, effectively resolving
the backlog problem.

Although prior parallel window decoding schemes successfully
meet throughput requirements, their impact on the time from when
a decoding window is generated to when it is decoded, known as
the reaction time, is suboptimal. Ideally, the decoding of each win-
dow should begin as soon as the window is generated from the
device. However, as shown in the decoding pipelines of Figure 1b,
in prior implementations a window which depends on data from an
adjacent window cannot begin until the adjacent window is com-
plete, increasing the reaction time. If the time to decode a window
is 𝑡𝑤 , the reaction time becomes at least 2𝑡𝑤 . This is particularly
detrimental for “blocking" operations, such as non-Clifford gates
(e.g. T, CCZ), which require the system to be fully decoded before
the program can continue. An increase in reaction time in this con-
text causes additional idle operations to be inserted until decoding
is complete, slowing down the computation.

In this work, we introduce SWIPER to reduce decoding reaction
time in window decoding schemes. SWIPER translates speculation
strategies commonly used in classical computer architectures to the
problem of window decoding, eliminating unnecessary idle time
waiting for data dependencies as shown in Figure 1.

To perform impactful speculation, SWIPER leverages key in-
sights: 1○ Since data dependencies between adjacent decoding win-
dows exist only along the window boundaries, they only constitute
a fraction of the total decoding problem. For example, at a code
distance 𝑑 = 21, the boundary is only ∼ 1/21 = 4.8% of the total
syndrome data of a window. 2○ Error chains that cross the bound-
aries between windows will be short and sparsely distributed in
the overwhelming majority of cases. In such cases, solving for data
dependencies does not need a full-fledged decoding process. With
these insights in mind, SWIPER’s predictor solves the simpler prob-
lem of finding short-weight matchings across the boundary, which
can be done much more efficiently than a full decoding of the win-
dow. This tentative result can then be forwarded to the adjacent
window, allowing it to begin decoding. Importantly, this does not
replace the full decoder, which is still run lazily and verifies the
speculation’s correctness.

We find that SWIPER provides a 40% reduction in the runtime
of the fault-tolerant program compared to previous work, a crit-
ical improvement given the high demand and time unit cost of
quantum processors, which will need to be run on the order of
hours to days for fault-tolerant programs [9, 29]. Our results utilize
our SWIPER-SIM decoding simulator, which allows simulation of
window decoders for fault-tolerant lattice surgery programs.

The main contributions of SWIPER are as follows:

• We introduce SWIPER, a new windowed decoder that lever-
ages a lightweight, FPGA-compatible predictor to improve
decoder reaction time by up to 50% compared to previous
parallel window decoders.

• We develop SWIPER-SIM, a round-level lattice surgery
decoding simulator, which enables novel program-level
simulations of windowed decoding and allows us to ana-
lyze how decoding reaction time impacts overall benchmark
runtime.

• Using SWIPER-SIM, we discover variance in reaction time
for prior parallel window decoders based on the alignment of
T gates. We therefore introduce an aligned window schedule
to enforce proper alignment, improving reaction time by
up to 50% in alignment-limited settings.

• We study SWIPER under varying decoder latency and show
that for fixed runtime constraints, SWIPER consis-
tently relaxes decoder latency requirements by over
2 − 5×, enabling the development of more powerful and ac-
curate decoders.

• We evaluate SWIPER with realistic decoder parameters on a
variety of representative benchmarks and demonstrate con-
sistent program runtime reductions of 40% regardless
of program size.

• We analyze the added classical overhead of SWIPER and
provide a heuristic to determine howmany classical decoders
to allocate for SWIPER. We find that the benefits of SWIPER
come at the cost of a consistent 31% increase in the number
of concurrent decoders compared to prior parallel window
decoding.

1387

SWIPER: Minimizing Fault-Tolerant Quantum Program Latency via Speculative Window Decoding ISCA ’25, June 21–25, 2025, Tokyo, Japan

time

(a) (b) (c)

Surface Code
Decoding Graph

Including Measurement
Errors Over Time

Window
Decoding

(e)

Window Dependency Graphs

Sliding Window
(d)

Buffer Region Creating
a Data Dependency

Parallel Window

SWIPER

Parallel Strategy

Sliding Strategy

1

2

3

4

5

1
2

3
4

5

1
2

3
4

5

1 2 3 4 5
Speculated Result
Complete Result

� Verify Speculation

� � � �

1 2 3 4 5� � � �

1

2

1

2

Syndrome

Artifical Syndrome
Committed

Matching

Uncommitted
Matching

Removed Syndrome

Dependency Bits

Buffer Region

Figure 2: (a) A d = 7 surface code patch with Z(X) stabilizers indicated by red(blue) faces. Drawn is the decoding graph for Z
stabilizers, with vertices of the graph indicating stabilizers and edges indicating error-prone data qubits. (b) Repeated rounds of
measuring stabilizers. The decoding graph is augmented to include a temporal dimension with new edges indicating possible
measurement errors. (c) A simplified view of decoding a surface code over time with one spatial dimension omitted. The
decoding graph is split into windows labeled 1-5 which are each treated as a separate decoding problem. (d) Decoding of
window 1 and its buffer region. Matchings in the window are committed and create Pauli frame updates while matchings
crossing into the buffer region create either artificial syndromes or removed syndromes at the boundary. Dependency bits on
the boundary are passed to window 2 and therefore constitute a data dependency between windows 1 and 2 (denoted by an
arrow). (e) Dependency graphs in a sliding window strategy and parallel window strategy. Arrows indicate the presence of a
buffer region belonging to the window at the source of the arrow. Also included are the same dependency graphs but when
using SWIPER. Speculated dependencies (double arrows) allow SWIPER to start decoding windows sooner, and full decoding
information is later used to verify the speculation (green check mark).

2 Background
For in-depth background, we refer to [22, 45, 50] for quantum com-
puting fundamentals and [25, 30] for QEC and stabilizer codes. In
this section, we give the necessary background on the decoding
problem and prior windowed decoding approaches.

2.1 Surface Codes
The surface code, shown in Figure 2a, is a leading QEC code that
fits into a 2D grid with nearest-neighbor connections. As a CSS
code, it has two sets of stabilizers (𝑍,𝑋) for decoding bit-flip errors
and phase-flip errors, respectively, with each treated as a separate
decoding problem. Operations on the surface code are typically
formulated as lattice surgery [36], in which adjacent surface code
patches are merged and split to perform logical operations. These
primitives enable universal computation [24, 42] which has led to
a growing set of resource estimates for large quantum programs [9,
29].

2.2 Quantum Error Correction Decoding
We presume that decoding takes place in the context of a long-
running set of surface code patches, each generating syndrome data
from their stabilizers. A decoding algorithm then operates on the
syndrome data and aims to produce the most likely combination of
physical errors that explains the observed syndromes. If all possible
errors flip either a pair of stabilizers or a single stabilizer, as is the

case with the surface code, we can use matching decoders [18, 26,
33]. In a matching decoder, we construct a decoding graph where
nodes are stabilizers and edges are error mechanisms, such as data
qubit errors and measurement errors. For the surface code, this
graph is a 3D lattice, shown in Figure 2b. Decoding then consists of
matching nodes with nonzero syndromes together to find a viable
explanation for the observed syndromes. If the overall matching of
syndromes is minimum weight, it is a good approximation for the
most likely error.

2.3 Blocking Operations
Decoding results can be tracked in software for some time using
Pauli frames [37, 51], omitting the need to apply immediate cor-
rective operations. However, non-Clifford gates in the program
constitute blocking operations which we cannot commute our Pauli
frame past. Instead, a Clifford correction based on up-to-date de-
coding results must be applied physically to continue beyond the
blocking operation [12]. For surface code computation, it is com-
mon to use T as the only non-Clifford gate, applied via a T gate
teleportation circuit. In this case, the result of the measurement op-
eration in the teleportation circuit must be fully decoded before the
S gate correction can be applied [23, 58]. In T-based computation,
the delay between this measurement operation and the conditional
S correction is based on the decoder’s reaction time, as shown in
Figure 1. The presence of blocking operations therefore necessitates
real-time decoding. In order to progress our quantum computation

1388

ISCA ’25, June 21–25, 2025, Tokyo, Japan Joshua Viszlai, Jason D. Chadwick, Sarang Joshi, Gokul Subramanian Ravi, Yanjing Li, and Frederic T. Chong

past blocking operations, a classical decoder must operate in con-
junction with the quantum device.

Key Insight: A delay in decoding a blocking operation
causes a delay in the execution of a whole quantum pro-
gram, so minimizing this reaction time is critical to ensure
fast program runtimes.

2.4 Decoding Windows
The latency of matching-based decoding algorithms grows polyno-
mially with the decoding graph size, which places a practical limit
on the size of a decoding problem. Instead of operating on the entire
decoding history prior to each non-Clifford gate, we can instead
operate on a pipeline of smallerwindows of decoding data, shown in
Figure 2c. In the original proposal, termed the overlapping recovery
method [20], each window has a commit region and a buffer region,
as shown in Figure 2d. In order to preserve the error-correcting
performance of the underlying code, the buffer region should span
∼ 𝑑 rounds, where 𝑑 is the code distance. The commit and buffer
regions together constitute a decoding task that is sent to the “inner”
decoder. After a window is decoded, the matchings in the commit
region are used to update the Pauli frame. Matchings that cross the
boundary between the commit region and the buffer region can
create "artificial" syndrome bits on the boundary that are passed to
the next window. Similarly, any matchings from the commit region
onto the boundary itself may remove a syndrome bit. The set of
syndrome bits on the boundary between the commit and buffer
regions therefore contains information that needs to be passed to
the next window. We will refer to these bits as the dependency bits.

In general, buffer regions are needed to pass information re-
lated to whether a potential error string could cross the boundary
between the commit regions of adjacent windows. A decoding
window can also have multiple buffer regions if it is adjacent to
multiple windows in space and time, which may occur during lat-
tice surgery [41]. At a boundary between two adjacent windows, a
choice must be made for which window contains the buffer region
(and so must be decoded first). Its result is then passed to the other
window via the dependency bits. To capture this, we can define
each boundary in a decoding window’s commit region as a “source"
or “sink". Prior work has also referred to these as the “rough" and
“smooth" boundaries, respectively. Source boundaries are followed
by a buffer region and pass information to the adjacent window,
while sink boundaries receive the passed information.

Key Insight: The choice of boundary types in each decod-
ing window enforces an ordering of decoding problems and
therefore has an important impact on overall decoding per-
formance.

2.5 Sliding Window Approach
The overlapping recovery method [20] is an example of sliding
window decoding. Examining a single surface code over time, each
window always starts with a sink boundary and ends with a source
boundary, meaning data is always passed sequentially. As shown in
Figure 2e, these dependencies mean that each window cannot begin
decoding until the previous window is fully decoded. The decoding
throughput is therefore equivalent to the decoding latency, so in

order to avoid a backlog, the latency must be lower than the time
to generate a new window.

We note that, to our knowledge, prior work has not examined the
construction of spatially sliding windows in the context of lattice
surgery operations. For completeness, however, we will assume
that a sliding-window decoder uses a similar, feedforward approach
for windows sliding along a spatial dimension.

2.6 Parallel Window Approach
In parallel window decoding [41, 55, 56], windows alternate be-
tween having all source boundaries and all sink boundaries. This
minimizes the depth of the resulting dependency graph, shown in
Figure 2e. Windows in the first layer have no data dependencies
and can begin decoding immediately. Windows in the second layer
are also independent from each other and can begin decoding after
all their dependencies are complete. For a long-running quantum
program, this occurs in a pipelined manner, allowing many separate
windows to be actively decoded in parallel. For spatially parallel
windowing of lattice surgery operations, an additional window
type is needed that has a mix of source and sink boundaries [41].

3 Motivation
3.1 Decoding Latency
The latency of an inner decoder is not necessarily fixed and will
generally vary with both the code distance and the specific decoding
task (set of syndromes) at hand. Due to the complexity of decoding
algorithms, in many cases the decoding latency will exceed the time
it takes to generate a decoding window. Regimes exist where this is
avoided, particularly smaller code distances with hardware-based
implementations [6, 15, 43], however, in all of these the latency
scales with the code distance 𝑑 , with the highest distance achieved
being 𝑑 = 23, still below the distances expected for large-scale
applications like factoring [29]. In Figure 3 we highlight this point
by plotting decoding latencies using PyMatching 2, a state-of-the-
art software decoder [33], and Stim [27], a detailed surface code
simulator, with an assumed syndrome measurement round time of
1 µs based on recent experiments [2] and a physical error rate of
𝑝 = 10−3. We can see latency scales not only with code distance but
also with the volume of the window, which varies with the number
of buffer regions as discussed in Section 2.4. Furthermore, this
issue of latency is not unique to matching-based decoders. Higher-
accuracy decoders [7, 54, 61] and decoders for qLDPC codes [46]
all struggle with decoding latency and therefore necessitate the
use of an outer parallel window scheme to avoid a backlog. As
such, we expect parallel window decoding to be a key ingredient
in fault-tolerant quantum systems going forward.

3.2 Reaction Time
We assume that a quantum program running on a surface-code-
based system will be decomposed into Clifford+T gates, where the
T gates constitute the only blocking operation. This is the lead-
ing approach for compiling to surface codes, with some synthesis
strategies even omitting Clifford gates entirely [42]. Since T gates
are blocking operations, the reaction time of the decoder will de-
termine how quickly T gates can be applied and, as a result, the
overall program latency.

1389

SWIPER: Minimizing Fault-Tolerant Quantum Program Latency via Speculative Window Decoding ISCA ’25, June 21–25, 2025, Tokyo, Japan

Figure 3: Sampled PyMatching 2 decoding latency distribu-
tions for varying window sizes. Latencies are relative to a
logical cycle consisting of dmeasurement rounds where each
measurement round is assumed to take 1 µs. Lower right: ex-
ample of a 3d3 decoding volume in the style of Figure 2c.

In parallel window decoding, the reaction time of a decoding
window is influenced by 1○ the latency of the inner decoder run
on each window and 2○ the delays caused by waiting for window
dependencies. In this work, we address 2○, improving parallel win-
dow decoding in an inner-decoder-agnostic approach. With prior
parallel windowing methods, 2○ constrains the reaction time for
windows with dependencies to be at least 2𝑡𝑤 , where 𝑡𝑤 is the
decoding latency. This is because a window with a dependency
must wait until that dependency is completely finished decoding
before it can begin decoding. However, we argue that this is not a
fundamental constraint. In this work, we find that dependencies
can be effectively predicted before the inner decoder is complete.
SWIPER uses these speculations to reduce the impact of 2○.

Key Insight: If the dependencies between windows can
be resolved faster than the decoding latency, a window can
begin decoding before its predecessors are complete.

3.3 Key Definitions
Here we summarize three important, related concepts as used in
this work.

• Decoding Latency: Time taken to actively decode a single
window

• Reaction Time: Time taken from when a window is gen-
erated to when it is decoded. This includes the decoding
latency and the time waiting for dependencies.

• Decoder Throughput: Rate at which windows finish being
decoded. Should meet or exceed the rate at which windows
are generated to avoid a backlog [58]

4 SWIPER: Speculative Window Decoding
In this section, we introduce SWIPER, a window decoder that in-
cludes a light-weight prediction step to speculate data dependencies
between adjacent decoding windows. We organize this section as
follows: in Section 4.1 we describe how SWIPER changes the reac-
tion time of T gates, in Section 4.2 we outline a scalable predictor
for surface code decoding, and in Section 4.3 we describe the classi-
cal decoder resources required by SWIPER. Then in Section 5 we

describe the simulationmethodology that we use and present bench-
mark evaluations comparing SWIPER to previous speculation-free
window decoders.

4.1 T Gate Teleportation
Performing the T gate in the surface code requires the use of a T
gate teleportation circuit, shown in Figure 1. The S gate correction
occurs 50% of the time depending on the preceding measurement
outcomes. Determining whether 𝑆 should be applied is blocking
and requires the decoder to be up-to-date through the 𝑍𝑍 merge
operation (dark gray). As described in Figure 2e parallel window
decoding requires that certain windows be dependent on future
windows. This is seen in Figure 1 where windows 2 and 4 must
wait to begin decoding until window 3 is completed at time 𝑡 +
𝑡𝑤 . In prior work, this is unavoidable; however, in SWIPER we
speculate the dependencies, allowing windows 2 and 4 to begin
decoding while window 3 is still decoding. After window 3 is fully
decoded, we verify that the speculations were correct by comparing
the speculated boundary-crossing matchings to the result of the
full decoder. If verification succeeds, the resulting reaction time
is reduced, allowing the program to continue past the blocking
operation earlier than with prior work. Importantly, if verification
fails upon completion of window 3, the reaction time is still no
worse than in prior work, because we can restart windows 2 and 4
at time 𝑡 + 𝑡𝑤 .

Key Insight: Window dependency speculation will never
worsen reaction times compared to baseline methods and
will generally improve them significantly.

4.2 Predictor Design
In designing a predictor, we leverage the commonly used fact that
the majority of decoding problems will be simple with sparse, low-
weight error chains [3, 48, 62]. Since most error chains are low-
weight, we can predict these dependencies by looking for small,
simple patterns along the boundary.

We develop our predictor design using an iterative approach.
Here, we describe how we iterate on a simple, 1-step predictor
to create a 3-step predictor that handles the majority of common
syndrome patterns that create data dependencies. We define the
overall speculation accuracy as the rate at which all dependency
bits along a boundary are predicted correctly; any single mistake
constitutes an incorrect speculation.

4.2.1 1-Step Predictor. In the 1-step predictor, we only look at
single errors (edges in the decoding graph) that cross the boundary
between a commit region and a buffer region. For each of these
errors, the predictor checks their syndrome bits. If both bits are 1,
it predicts that the error occurred and creates a dependency. We
note that all errors can check their syndrome bits simultaneously,
ensuring a low-latency, constant runtime prediction. Furthermore,
for a distance 𝑑 surface code, the number of errors that we need
to check is only 𝑂 (𝑑2), which can be efficiently implemented in
hardware logic.

In Figure 4 we plot the accuracy of the 1-step predictor as well
as a breakdown of misprediction cases. A false positive is when a
matching crosses the boundary was predicted but did not actually
exist and a false negative is when a matching that did cross the

1390

ISCA ’25, June 21–25, 2025, Tokyo, Japan Joshua Viszlai, Jason D. Chadwick, Sarang Joshi, Gokul Subramanian Ravi, Yanjing Li, and Frederic T. Chong

13 15 17 19 21 23 25 27 29 31
Code Distance

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

1-Step Predictor

2-Step Predictor

3-Step Predictor

Predictor Performance

False Positives
False Negatives
False Negative and Positive

Figure 4: Accuracy of the three different predictors for in-
creasing values of code distance. Bars indicate a breakdown
of different failure cases.

Correct
Prediction

False
Positive

False
Negative

Incorrect
Prediction

Real Match

Correct
Prediction

Figure 5: Example common cases for the 1-step predictor.

boundary was not predicted. We generate circuit-level surface code
windows at a physical qubit error rate of 0.1% using Stim [27] and
use PyMatching [34] as the reference decoder to determine the
misprediction. Despite its simplicity, the 1-step predictor can still
reach > 70% accuracy for code distances up to 25.

The 1-step predictor can be further improved by studying com-
mon failure cases. In Figure 5 we describe the most common cases
that the 1-step predictor encounters. Although all failure cases are
equally damaging and constitute a misprediction, from Figure 4 we
find that false positives are the most frequent mistakes made by
the 1-step predictor.

4.2.2 2-Step Predictor. To address common false positives in the
1-step predictor, we propose an improved 2-step predictor. The
intuition for the 2-step predictor comes from the fact that, after
step 1, we may have clusters of errors that need to be pruned to
create a minimal matching. We therefore design step 2 similarly to
the peeling decoder introduced in [19] wherewe prioritizematching
syndrome bits with the fewest viable matches, akin to leaf nodes.

We increase the set of errors considered to include all errors at
most a distance of 2 from the boundary. In the first step, like the
1-step predictor, each error checks if both its syndrome bits are 1. If
so, instead of declaring a match, they increment both syndrome bits
by 1. In the second step, each error that believed itself to be a match
is assigned to a bin based on the sum of its adjacent syndrome bits.
Then in increasing bin order, each error checks if its syndrome bits
are nonzero. If so, it declares itself a match and sets both syndrome
bits to zero. Importantly, the number of bins is limited by the degree

2

2

3

3

2

2

1

1

1

1

00

0

0

0

0

0

0

00

0

0

0

0

Candidate Matches

Step 1

Step 2

Step 3

Selected Matches

• Each candidate match adds +1
 to its adjacent syndromes

• Sort candidate matches into
 bins based on sum of its
 adjacent syndromes
• Select matches in increasing
 bin order.

• Match any remaining
 weight-2 error chains

Figure 6: An overview of the final, 3-step predictor logic.

of vertices in the decoding graph, which for the surface code is
constant due to its constant weight-4 parity checks. The runtime of
this step is therefore independent of the code distance. In Figure 4
we find that the 2-step predictor resolves nearly all false positive
cases mispredicted by the 1-step predictor.

4.2.3 3-Step Predictor. Finally, to address common false negative
cases, we introduce a third step to the 2-step predictor. Offline, we
can precompute the pairs of syndrome bits that can be matched by
a weight-2 error chain crossing the boundary. Then, after the 2-step
predictor determines its matches, we check each precomputed pair
to see whether its syndrome bits are both 1 in the decoding graph,
and if so, we declare a match. Similarly to the 1-step predictor,
these checks can all occur in parallel along the boundary, ensuring
a constant runtime with the number of such checks as 𝑂 (𝑑2). We
summarize the logic of this final 3-step predictor in Figure 6.

In Figure 4 we can see that the 3-step predictor reduces the
amount of false negatives produced by the 1 and 2-step predictors,
achieving a prediction accuracy of > 90% for code distances up
to 23. It is likely that more complex predictors could reach even
higher accuracies, but we leave this as future work.

Key Insight: The 3-step predictor runs in time 𝑂 (1) since
the number of unique bins in step 2 depends on the parity
check weight, which is constant for the surface code.

4.2.4 Hardware Implementation. To validate the behavior of the
3-step predictor, we implemented the algorithm on FPGA hardware.
The FPGA environment was chosen as FPGAs have seen value as
platforms for full QEC decoders [43, 63]. We performed a behav-
ioral simulation of the 3-step predictor in AMD’s Vivado Design
Suite [4] to verify the 𝑂 (1) runtime for 𝑑 = 13 through 𝑑 = 27.
The time taken for the predictor implementation is always 60ns,
demonstrating that it is constant with respect to distance. Since
the 3-step predictor only considers 𝑂 (𝑑2) syndrome bits compared

1391

SWIPER: Minimizing Fault-Tolerant Quantum Program Latency via Speculative Window Decoding ISCA ’25, June 21–25, 2025, Tokyo, Japan

7 11 15 19 23 27
Code distance

0.0

0.5

1.0

1.5

2.0

R
es

ou
rc

e
us

ag
e

1e6

3-step predictor LUTs
3-step predictor registers
Helios LUTs
Helios registers
Micro Blossom LUTs

Figure 7: FPGA resource usage of 3-step predictor compared
to FPGA-optimized full decoders ([43, 63]). Dotted lines rep-
resent fits to reported asymptotic costs.

to the full decoding volume of 𝑂 (𝑑3), we also expect area costs to
scale favorably compared to the full decoder.

As a rough comparison, in Figure 7 we plot resource usage of our
3-step predictor implementation versus full decoder FPGA imple-
mentations [43, 63]. As expected, we find that the 3-step predictor
has lower resource costs and more favorable scaling than a full de-
coder due to its restriction to processing smaller decoding volumes
at window boundaries. We expect costs to be further reduced with
future implementation optimizations.

4.3 Classical Resources
Parallel window decoding will need access to many classical de-
coders operating in parallel to keep up with throughput demands.
Compared to prior speculation-free schemes, SWIPER collapses
the dependency structure of windows, which incurs an increased
demand on the number of concurrent decoders. Given that parallel
window decoding relaxes latency requirements, for this work, we
assume decoders exist out-of-fridge and are much less costly than
the quantum device itself. However, here we study how to mini-
mize the required classical costs of SWIPER. In particular, incorrect
speculation can cause wasted classical computation as it requires
restarting some decoding tasks. SWIPERmitigates this cost through
an optimistic speculation strategy.

4.3.1 Handling Mispredictions. Awaiting decoding window begins
decoding after its incoming dependencies have passed boundary
speculations to it. However, once each dependency is fully decoded,
we must verify if the speculation was correct by comparing the
dependency bits produced by the predictor and by the full decoder.
In the event that the predictor was incorrect, we have a mispre-
diction The relevant decoding window operated on incorrect syn-
drome data, leading to an invalid solution; the decoding task must
be restarted using correct dependency bits. We call this window
poisoned. However, incorrect matching of syndromes along one
boundary can lead to incorrect matching of other syndromes on
other boundaries, so the effects of a misprediction may propagate
further in the window dependency graph. This raises the important
question: which other decoding windows are unreliable in the event
of a misprediction?

Given a dependency graph with a poisoned node, shown in
Figure 8a, the pessimistic speculation strategy (left) restarts all de-
scendants that have already begun decoding. If the poisoned root

Decoding
Restarted

Pessimistic
Speculation

Strategy

MispredictionKey:

1 2

3

4

5

1 2

3

4

5Adjacent
Speculation

Strategy

1 2

3

4

5Optimistic
Speculation

Strategy

(a) (b)

Figure 8: (a) Three different speculation strategies for han-
dling a misprediction which has poisoned window 1. (b) Esti-
mating classical decoder costs of the three different proposed
speculation strategies. All values are averaged over 10,000
shots. The specific case simulated is 100 windows in a “zig-
zag” shape (right) using a sliding schedule with speculation.
In the breakdown, “valid compute” indicates compute that
finished and was correct, whereas “wasted compute” indi-
cates compute that was restarted early or found to be incor-
rect.

significantly increases the chances of these descendants being poi-
soned, this strategy is effective, as it halts likely-incorrect decoding
tasks earlier and avoids needless computation. However, if the de-
scendants’ chances of success are not significantly affected, this is
a poor strategy as it throws away valid, in-progress decoding tasks
that are likely to be correct. As discussed in Section 4.2, we expect
most decoding problems to be sparse with low-weight error chains.
In this regime, we do not expect a change in syndrome bits on one
boundary of a window to change a result on a different boundary.
Therefore, an optimistic speculation strategy (Figure 8a, right) only
restarts the poisoned node itself.

To evaluate this intuition, we use Stim and PyMatching to sim-
ulate the surface code at a physical qubit error rate of 0.1% and
estimate the conditional probability of a misprediction of a source
boundary given a received misprediction on a separate sink bound-
ary. We find no change in accuracy if the two boundaries are not
adjacent (e.g. one temporal boundary to the next) and a ≈ 4% de-
crease in accuracy if the two boundaries are adjacent (e.g. one spatial
boundary and one temporal boundary). Given this asymmetry, we
propose an intermediate strategy that restarts the poisoned node
and any windows that used a prediction on an adjacent boundary
to the misprediction, shown in Figure 8a (center).

In Figure 8b, we show the classical costs for decoding a sequence
of 100 windows with speculation failures using the three specula-
tion strategies detailed above. We use a prediction accuracy of 90%
with a reduced accuracy of 86% for boundaries adjacent to a mis-
prediction. If the decode time is comparable to the time to generate
a window (1 cycle), we see little variance, since the depth of the ac-
tive dependency tree is small. However, at large decode times more
similar to what we observed in Figure 3, we see that the pessimistic

1392

ISCA ’25, June 21–25, 2025, Tokyo, Japan Joshua Viszlai, Jason D. Chadwick, Sarang Joshi, Gokul Subramanian Ravi, Yanjing Li, and Frederic T. Chong

Quantum Chip

Qubit Control

Readout
Resonators

Decoder Unit

Decoder Unit

Decoder Unit

Decoder Unit

PFU

Qubits Couplers

Instruction Queue

PFU

PFU

PFU

Compiled
Program

SWIPER

Window Builder

Window
Dependency

DAGWindow
Queue

Decoder
Stall

Inner Decoders

Pauli Frame
Rollback

Speculation
Verifier

Misprediction
Identified

Decoder Manager

Window Manager

Predictors

10 mK

4 K

300 K

Syndrome
Pre-processing

Decoding System
Runtime

Controller

Conditional
S Gate

Verified
Decoding

Pauli
Frame
Data

9 13 17 21 25 29
Code distance

0

20

40

60

80
B

an
dw

id
th

 (G
bp

s)

0.9×

0.2×

Naive
Pauli Frames
Syndrome Compression

0

500

1000

1500

2000

Po
w

er
 (m

W
)4K Power Budget

4K - 300K Decoding I/O Costs

Figure 9: Overview of SWIPER’s interaction with a decoding
system for superconducting quantum computers. The bot-
tom right plot estimates the bandwidth and power used to
communicate between 4K and 300K for decoding. Utilizing
Pauli frames and a pre-processing step such as sparse syn-
drome compression significantly reduce costs.

strategy unnecessarily restarts more windows, wasting classical
compute. In all cases, we find that the optimistic strategy performs
the best, which we attribute to the high prediction accuracy and
minimal downstream effects in the case of mispredictions.

4.4 System Overview
Figure 9 gives an overview of how SWIPER interacts with a de-
coding system for a superconducting quantum computer. Since
SWIPER is designed to be agnostic to the inner decoder, we assume
that decoder units simply operate out-of-fridge. In such a system,
an important consideration is the impact that sending real-time
data between the fridge (4K) and room temperature (300K) has on
scalability. We discuss this here briefly, but emphasize that SWIPER
is compatible with prior and future work optimizing the underlying
decoder, such as operating decoders in-fridge [11, 35, 48]. Using
SWIPER with such decoders improves their scalability, removing 1
𝜇𝑠 as a latency constraint, which, as described in Section 3.1, proves
to be exceedingly difficult for the large code distances needed in
factoring and chemistry applications.

4.4.1 Bandwidth and Power. Communicating data between 4K and
300K can stress the cooling capacity of a dilution refrigerator due to
potentially many communication cables that will dissipate heat [38].
In this context a large contributor can be the quantum control
itself [57] where physical gate pulses have an order of magnitude
larger power than readout [38]. Fortunately, this can be alleviated
by placing the quantum controller in-fridge and instead sending
logical-level instructions [11, 57]. The use of Pauli frames further
improves over this baseline by eliminating the need to send physical
corrections back into the fridge. Additionally, since corrections take
the form of deciding whether an S gate is applied after each T gate

teleportation, which should occurwith a 50% chance, the instruction
bandwidth is not affected by SWIPER.

Syndrome readout can also stress the system. However, since
syndromes are typically sparse and low-weight we can make use
of cheap preprocessing steps [16, 48] to reduce bandwidth. In the
bottom right plot of Figure 9 we estimate the reduction in I/O costs
when applying two optimizations: Pauli frames and an example
syndrome preprocessing step, sparse syndrome compression. Simu-
lations are based on 50 simulated surface codes with an error rate
of 0.1%. We assume a bandwidth per coaxial cable of 1 Gbps and
power per coaxial cable of 31 mW. This is a conservative assump-
tion based on prior work assuming 10 Gbps with 31 mW [11, 32]
and 1 Gbps with 11.5 mW [38, 60]. We find bandwidth and power
scale favorably, and we note that costs can be further reduced by
using higher bandwidth cables such as optical fibers [65].

Beyond bandwidth and power, previous justification for in-fridge
decoders has been to keep decoder latency below 1𝜇𝑠 [11]. However,
since SWIPER is designed to tolerate large latencies while meeting
throughput demands, the ubiquitous 1𝜇𝑠 goal is no longer required,
removing a key constraint underlying prior work.

Key Insight: SWIPER does not increase 4K-300K I/O costs,
as corrections are tracked via Pauli frames and are ‘applied’
by deciding if an S gate should occur after a T gate.

4.4.2 Mispredictions. In Section 4.3.1 we describe SWIPER’s policy
for handling misprediction. Here, we clarify how mispredictions
interact with the broader decoding system. Specifically, if SWIPER
encounters a misprediction, the optimal speculation strategy dic-
tates we restart only the poisonedwindow. However, if the poisoned
window was already complete, then it committed an invalid value
to the corresponding Pauli frame. SWIPER therefore issues a Pauli
frame rollback. The Pauli frame rollback removes the Pauli record
corresponding to the poisoned window from the Pauli Frame Unit
(PFU). Furthermore, since deciding whether an S gate is applied
after a T gate requires that all decoding results be verified, mispre-
dictions do not propagate to the quantum device.

Key Insight: Before deciding if an S gate occurs after a T
gate, all mispredictions are resolved as Pauli frame rollbacks
and all decoding results are verified.Mispredictions therefore
do not affect 4K-300K I/O costs.

5 Methodology
To evaluate the impact of SWIPER on the overall program latency,
we perform benchmark evaluations using state-of-the-art compila-
tion techniques. To do so, we develop our own simulator, SWIPER-
SIM, to evaluate window decoders given lattice surgery programs.

5.1 Simulation Software
Figure 10 gives an overview of the procedure by which we compile
and evaluate benchmark applications. We source relevant bench-
marks for the fault-tolerant regime from recent repositories [31,
40, 47, 53] which can be compiled down to Clifford+RZ gates in
OpenQASM [14] using Cirq [21]. We then use Gridsynth [52] to
approximate RZ gates as a sequence of H, S, and T gates with a
precision of 10−10. We feed the resulting Clifford+T circuit into
the Lattice Surgery Compiler [39] to create a mapped and routed

1393

SWIPER: Minimizing Fault-Tolerant Quantum Program Latency via Speculative Window Decoding ISCA ’25, June 21–25, 2025, Tokyo, Japan

High-Level Benchmarks

Clifford + RZ

Qualtran, pyLIQTR,
MQT Bench, QASMBench

Cirq Decompose

Clifford + T

Gridsynth

Lattice Surgery Program

Lattice Surgery Compiler

Window Decoding Trace

SWIPER-SIM W
in

do
w

 M
an

ag
er

W
in

do
w

 B
ui

ld
er

D
ec

od
er

 M
an

ag
er

D
ev

ic
e

M
an

ag
er

Simulator

Figure 10: The pipeline used to evaluate high-level bench-
mark programs with different window decoders, including
details of SWIPER-SIM. Inset: SWIPER-SIM runtime versus
program size on a single core of an Intel Xeon Gold 6248R
processor.

lattice surgery program using the Edge-Disjoint Paths Compilation
(EDPC) surface code layout [8].

SWIPER-SIM takes in a compiled lattice surgery program and per-
forms a round-level simulation of syndrome generation, window-
ing, and decoding (the final step in Figure 10). Based on the lattice
surgery program, the DeviceManager generates a set of syndrome
rounds every 1 µs (based on recent experimental timing [2]) for all
currently active surface code patches. These syndrome rounds are
collected by the WindowBuilder and assembled into windows by
the WindowManager, with source/sink boundaries decided based
on a window decoding strategy (e.g. sliding, parallel). Completed
windows are sent to the DecoderManager, which initiates spec-
ulation and decoding tasks when the relevant dependencies are
satisfied, manages classical compute resources, and handles mis-
predictions. Speculation uses the optimistic strategy described in
Section 4.3.1 to handle mispredictions. For blocking instructions,
the DeviceManager delays the conditional instruction until the De-
coderManager signals that it has fully decoded (and verified) the
instruction history up to and including the blocking operation.

By simulating at the granularity of rounds, windows do not
necessarily need to align with instructions. As a result, idling while
a blocking T gate is being decoded can complete as soon as possible,
even if the reaction time is not a multiple of the window size. As
an example, Figure 11 shows a spacetime program trace generated
by SWIPER-SIM for a hand-specified lattice surgery program for
15-to-1 magic state distillation [10, 24, 49]. We can compare prior
work (Figure 11a) with SWIPER (Figure 11b) to see the reduction
in reaction time for blocking operations when using speculation.
Slices are colored by instruction type. Y-basis measurement and S
gates are modeled according to [28].

5.2 Studying reaction times with SWIPER
In Figure 12 we plot the sensitivity of SWIPER to decoding latency
and speculation accuracy. Decoding latency is proportional to win-
dow volume with relative factor 𝑟 . For sliding windows of size 2𝑑3
(𝑑3 commit, 𝑑3 buffer), 𝑟 = 0.5 corresponds to a latency of 𝑑 rounds,

Figure 11: SWIPER-SIM program traces for a 15-to-1 magic
state distillation in a distance-7 code using the construction
from [24] (Fig. 17). Time advances vertically, and each hori-
zontal slice represents a batch of syndrome data (colored by
instruction type). Decoding time is fixed to be the same as
the time to generate 2d rounds, about twice the window gen-
eration rate. Device traces are shown for (a) baseline parallel
window method (15.1d QEC rounds) and (b) SWIPER aligned
window (11.3d QEC rounds, a 25% improvement).

matching the window generation rate; as expected, we see that
the backlog problem for default sliding window decoding (yellow
dashed line) therefore begins when 𝑟 > 0.5. SWIPER mitigates this
problem with speculation, but we find that reaction time for sliding
windows is particularly sensitive to speculation accuracy. This is
due to the depth of the dependency tree, which is unbounded in
sliding window decoding.

Equivalent latency factors extracted from linear fits to PyMatch-
ing latency data (Figure 3) are shown along the x axis in green
for code distances corresponding to the so-called gigaquop regime
(10−9 logical error rate, 𝑑 = 15), the teraquop regime (10−12, 𝑑 = 21),
and the petaquop regime (10−15, 𝑑 = 27) evaluated at 𝑝 = 10−3.
We additionally highlight these three regimes for a hypothetical
high-accuracy RNN decoder inspired by [7], which we assume to
have similar latency to PyMatching for a fixed code distance but
4× reduced logical error rate, reducing the required code distances
to 𝑑 = 13, 19, and 25 respectively.

5.2.1 T Gate Alignment. We also notice that, in parallel window
decoding, the type of window a T gate aligns with affects its reaction
time. As shown in the bottom example of Figure 13, if the merge
operation in a T gate teleportation ends with a sink boundary, the
reaction time can be further delayed by the time to generate the
source boundary’s window in the future. In this specific example,
since window 3 depends on window 4, it must wait for window 4 to
be generated before it can even begin decoding. However, if instead
the merge ends in a source boundary, as shown with window 8 in
the top example, the soonest window 8 can begin decoding is after
its buffer region is generated, which is only 𝑑 rounds.

More generally, we conclude that a blocking operation should al-
ways be “aligned” (have a future-facing source boundary) to ensure
minimal reaction time. Since a sliding window schedule always
ends with source boundaries, it is always aligned. However, the

1394

ISCA ’25, June 21–25, 2025, Tokyo, Japan Joshua Viszlai, Jason D. Chadwick, Sarang Joshi, Gokul Subramanian Ravi, Yanjing Li, and Frederic T. Chong

Figure 12: (a) Sensitivity of reaction time to decoding latency
and speculation accuracy. Speculation accuracy of 0% cor-
responds to baseline (no speculation) decoding. Decoder la-
tency is tdec (v) = rv/d2 rounds, where v is the volume of the
decoding problem (in units of d3) and the relative latency
factor r is varied along the x axis. Equivalent latency factors
extracted from linear fits to PyMatching latency data and a
hypothetical high-accuracy RNN decoder at varying target
logical error rates are also shown for comparison. (b) For a
fixed reaction time, SWIPER allows for up to 5× longer de-
coder latency compared to the parallel-window baseline. (c)
Simulator trace of repeated T gates and S corrections on an
idling logical qubit. A similar experiment with 1000 T gates
was used to collect the data in this figure.

Minimum
Reaction Time

Minimum Reaction Time

Well-Aligned
T Gate

Poorly-Aligned
T Gate

Buffer Region

Buffer Region

Parallel
 Window
Pattern

8

3

1

2

3

4

5

6

7

8

2 4

9

1

6 7

Figure 13: Comparing awell-aligned T gate (top) and a poorly-
aligned T gate (bottom).

sliding window schedule is much more sensitive to speculation ac-
curacy, leaving it vulnerable to the backlog problem. To address this,
we also introduce an aligned window strategy, which is a parallel
window strategy with forced alignment of blocking operations.

Key Insight: Using SWIPER-SIM, we find that parallel win-
dow decoders suffer from dependency-induced delays, as
already discussed, but also alignment-induced delays.

5.2.2 SWIPER’s effect on reaction times. In Figure 12 a, we find
that the aligned strategy retains the misprediction resiliency of
parallel window decoding while reducing reaction time. We see
that for short decoding latency, the aligned strategy yields over
50% shorter reaction times than the parallel strategy. As decoder
latency increases, parallel and aligned strategies become increas-
ingly similar; reaction time in this regime is dominated by waiting
for dependencies to resolve rather than generating windows. For
both aligned and parallel, we see that SWIPER can reduce reaction
times by roughly 50% when decoding latency is long; we attribute
this to SWIPER effectively “flattening” the two-layer dependency
structure of the parallel window strategy. A speculation accuracy
of 90% is sufficient to get most of the benefit of SWIPER. Finally,
we see that if the speculation is reliable enough, sliding window
decoding performs best at all decoder latencies, which we attribute
to the use of smaller window sizes (typically 2𝑑3, compared to the
3𝑑3-volume windows in parallel window decoding) leading to lower
inner decoder latencies.

5.2.3 Relaxing Inner Decoder Latency. Figure 12b shows that, in a
setting with a fixed runtime budget, SWIPER allows for significantly
longer inner decoder latencies. As shown in Figure 13, well-aligned
T gates have their reaction times shortened by 𝑑𝑡cycle compared
to poorly-aligned T gates; in the regime where decoding time 𝑡dec
is fast compared to 𝑡cycle, the same overall reaction time can be
achieved with a significantly slower decoder. For fixed reaction time
values, we compare high-accuracy SWIPER to the default parallel
window scheme and find that the speculated aligned and sliding
schemes allow upward of 5× increased latency for reaction times
near 100 µs and all three (parallel, aligned, and sliding) speculated
methods allow 2× increased latency in the limit of large reaction
time (500 µs+).

This relaxation in decoder latency requirements could be trans-
lated into an increase in program fidelity by using recurrent,
transformer-based decoders [7], tensor network decoders [1, 13], or
ensemble decoders [54] which have demonstrated improvements
to decoder accuracy at the cost of decoder latency.

5.3 Benchmark Simulation
To further evaluate the efficacy of SWIPER, we select a suite of
fault-tolerant benchmark applications and use the methodology
described in Section 5.1 to simulate the program runtime when
using different window decoding strategies. To evaluate at the
scales expected for large, fault-tolerant applications, we consider
a physical error rate of 𝑝 = 10−3 and code distance 𝑑 = 21, which
corresponds to the teraquop regime with logical error rates below
10−12. We again assume that each QEC syndrome round takes 1 µs
and we sample decoding latencies from the distributions shown
in Figure 3, rounding up if the window volume is not an integer

1395

SWIPER: Minimizing Fault-Tolerant Quantum Program Latency via Speculative Window Decoding ISCA ’25, June 21–25, 2025, Tokyo, Japan

Benchmark Short name Footprint Physical qubits T count Source Domain
Magic State Distillation msd_15to1 32 28192 15 [24] Resources, 𝜇Benchmark
Toffoli toffoli 9 7929 7 [45] 𝜇Benchmark
RZ(𝜙), 𝜖 = 10−10 rz 4 3524 100 [52] 𝜇Benchmark
Quantum Read Only Memory qrom 153 134793 48 [31] Data I/O
8-bit Adder adder_8bit 111 97791 112 [40] Factoring subroutine
Carleman Encoding carleman 264 232584 394 [53] ODE
H2 Qubitized Walk Operator H2_molecule 92 81052 3084 [53] Chemistry
Fermi Hubbard (2, 2) Kagome fh_kagome 181 159461 3340 [53] Chemistry
Fermi Hubbard 4 × 4 Grid fh_square 225 198225 3898 [53] Chemistry
Quantum Phase Estimation qpe 85 74885 11378 [47] Common subroutine
Quantum Fourier Transform qft 86 75766 11484 [47] Factoring subroutine
Heisenberg Encoding heisenberg 107 94267 12833 [53] Chemistry
Grover’s Algorithm grover 34 29954 13577 [47] Data Search

Table 1: Selected benchmark applications. Footprint is the number of 𝑑 × 𝑑 surface code patches used. Physical qubit count is
calculated at 𝑑 = 21.

multiple of 𝑑3. Speculation is assumed to take 1 µswith an accuracy
of 90% based on our results in Section 4.2.

5.3.1 Selected Benchmarks. Table 1 summarizes the lattice surgery
program benchmarks we simulate. We identify three “microbench-
marks” (𝜇Benchmarks) which are small, consistently-used primitive
operations in the fault-tolerant domain whose performance can be
extrapolated to estimate that of programs beyond what we include
in Table 1.

For the other benchmarks, we include exact quantum phase
estimation on 5 qubits due to its presence as a common subroutine
in many quantum algorithms. We include Quantum Read Only
Memory (QROM) with 15 data bits and 15 select bits to represent
data I/O in many quantum algorithms. Grover’s algorithm on 5
qubits is chosen to represent data search applications. We include
block encoding for Carleman linearizationwith 4 truncation steps to
represent quantum algorithms for nonlinear differential equations.
We include the Quantum Fourier Transform (QFT) on 10 qubits and
an 8-bit adder to represent subroutines in factoring applications.
Finally, simulation of the Fermi-Hubbard model on a 4 × 4 lattice
and performing qubitized ground-state energy estimation of 𝐻2 [5]
are included to represent chemistry applications.

5.3.2 Results. Figure 14a shows the program runtimes for the se-
lected benchmarks relative to the baseline parallel window method.
Due to the uncertainty in runtime for smaller benchmarks (dis-
cussed in the following subsection), we report aggregate results
for benchmarks with at least 1000 T gates: without SWIPER, the
aligned scheduling method achieves a 4.3% to 11.8% (geomean 6.3%)
reduction in runtime compared to parallel window. With SWIPER,
all three scheduling methods (parallel, aligned, and sliding) improve
significantly. SWIPER-parallel achieves 31.5% to 35.4% (geomean
32.9%) reduction in runtimes, SWIPER-aligned achieves 36.9% to
40.6% (geomean 38.4%) reduction in runtimes, and SWIPER-sliding
achieves 40.4% to 43.6% (geomean 41.5%) reduction in runtimes
compared to baseline parallel window. We observe that the QROM

and Carleman encoding benchmarks exhibit slightly less perfor-
mance improvement compared to the other benchmarks; we con-
clude that this is because these two benchmarks have a lower frac-
tion of T instructions (∼40% compared to ∼70-80% for the other
benchmarks), so the benefit of reducing T reaction time is slightly
less impactful.

5.3.3 Overhead due to missed speculations. We can determine the
impact of missed speculations on runtime by comparing the run-
times of SWIPER for the default 90% and an idealized 100% spec-
ulation accuracy (the difference is shown as the ligher portion of
the bars in Figure 14a). For benchmarks with at least 1000 T gates,
we observe 12.5% to 28.7% (geomean 20.2%) runtime overhead due
to speculation failures. The overhead is higher for SWIPER-sliding
(geomean 26.2%) and lower for SWIPER-aligned (geomean 22.9%)
and SWIPER-parallel (geomean 13.7%), which can be understood by
recognizing that higher-depth window dependency structures lead
to higher missed speculation costs, as was explored in Figure 12.

5.3.4 Runtime uncertainty and extrapolation. It is important to
note that there is uncertainty in the runtime of the benchmark
programs we simulate. Randomness is introduced in two ways
in our simulations: 1○ conditional S gates, which are applied 50%
of the time after a T gate teleportation, and 2○ mispredictions
in SWIPER. To capture this uncertainty, we run 10 trials of each
benchmark with fewer than 3,000 T gates. For these benchmarks,
the runtimes in Figure 14a have error bars showing the standard
deviation of the results. In Figure 14b-c, we show that this standard
deviation (relative to mean) decreases as the T count increases
while the relative improvement over the baseline remains constant.
We therefore claim that in the limit of the large T counts we expect
in future fault-tolerant algorithms, SWIPER will show performance
improvements similar to those in the larger benchmarks in our
study. We also note that the amount of uncertainty does not appear
to depend strongly on the window strategy being used, indicating
that most of the variation stems from 1○ (the conditional S gate)
rather than 2○ (mispredictions in SWIPER). This can be explained
by the fact that conditional S gates occur with 50% probability,
whereas mispredictions occur only with 10% probability.

1396

ISCA ’25, June 21–25, 2025, Tokyo, Japan Joshua Viszlai, Jason D. Chadwick, Sarang Joshi, Gokul Subramanian Ravi, Yanjing Li, and Frederic T. Chong

Figure 14: (a) Program runtime for selected benchmarks under different window schedulingmethods, with and without SWIPER.
Bottom histogram shows relative runtimes normalized to default parallel window runtime. Classical processor resources are
unlimited. Vertical black lines indicate standard deviation over 10 randomized trials for smaller benchmarks. For SWIPER,
lighter portion of bar shows the contribution of missed speculations to runtime. Top right: Relative differences in runtime
when using auto-limited processor count (Section 5.3.5) for benchmarks with runtime longer than 104 µs. (b) Performance
improvement of SWIPER appears to be consistent across benchmarks size. (c) Relative standard deviations in runtime over
randomized trials decreases as programs get larger.

Looking ahead, because SWIPER’s main benefit is reducing the
reaction time for T gates, which are typically the main cost of a
program [9, 42], the magnitude of runtime improvement is broadly
independent of program size, so we expect we would see similar
improvements for full application-level benchmarks.

5.3.5 Classical overhead of SWIPER. SWIPER takes the perspective
that a modest increase in classical workload is worth an improve-
ment in quantum computer speed. Nevertheless, it is important
to quantify the extra classical resources required to implement
SWIPER. While in the majority of this work we assume the number
of classical decoders is not limited, in practice we must instantiate a
finite number of decoders to implement SWIPER on real hardware.
As speculation failures occur probabilistically, we cannot know the
exact optimal number of classical decoding processors to provi-
sion. We suggest a simple heuristic to provision an appropriate
number of processors: we simulate the program of interest in the
perfect-speculation, unlimited-processor case and track 𝑃max (max-
imum number of parallel processes) and 𝑃mean (mean number of
parallel processes) over all rounds of the program. We then allocate
𝑃max + 𝜖spec𝑃mean processors to SWIPER, where 𝜖spec is the proba-
bility of a misprediction (10% in our evaluation). The intuition for
this heuristic is that 𝑃max is the number of processors required by
the program and 𝜖spec𝑃mean is the expected number of processors
needed to handle mispredicted windows that are being redecoded.

We do not observe any significant variation in simulated program
runtime with this limit imposed. Figure 15a compares the unlimited-
processor usage to this auto-set processor limit, showing that the
heuristic is able to accurately estimate the true number of required
processors without bottlenecking the decoder, setting the processor
limit very near to the actual maximum required. A linear fit to
this data also reveals that SWIPER uses approximately 24% more

Figure 15: (a) Comparing classical compute cost between base-
line method and SWIPER for selected benchmarks. (b) Frac-
tion of total decoder processing time spent on tasks that were
discarded.

simultaneous decoding processors than the default method. We
argue that this extra cost is worth the significant improvement in
quantum program runtime, as classical hardware is inexpensive
compared to a large-scale quantum computer.

Furthermore, we quantify the amount of classical decoder compu-
tation that is “wasted” on decoding tasks that are based on incorrect
speculations. A histogram of the fraction of wasted decoding com-
putation cycles is shown in Figure 15b for the three scheduling
methods. We see that SWIPER-sliding (yellow) incurs more wasted
computation than parallel and aligned, as expected considering the
deeper dependency structure of windows in a sliding scheme.

6 Related Work
While QEC decoding has broadly been an active area of re-
search [11, 17, 44, 59], related work on decoder performance has

1397

SWIPER: Minimizing Fault-Tolerant Quantum Program Latency via Speculative Window Decoding ISCA ’25, June 21–25, 2025, Tokyo, Japan

largely focused on achieving a decoding latency within 1 µs as
a requirement for real-time decoding, motivated by the fact that
superconducting systems generate a round of syndrome measure-
ments every ∼ 1 µs [2]. LILLIPUT [15] proposes a look-up table that
can decode up to 𝑑 = 5within 1 µs. Astrea [62] extends this to 𝑑 = 9
in 1 µs via brute-force searching low-Hamming-weight bitstrings.
Clique [48] is a lightweight predecoder that specifically addresses
isolated errors and bears some resemblance to the 1-Step Predictor
proposed in this work. More recently, Promatch [3] proposes an
adaptive predecoding step to lift this limit to 𝑑 = 13 within 1 µs in
regimes of low physical error rate (0.01%). Barber et al. [6] design a
Collision Clustering decoder and an FPGA implementation that can
reach 𝑑 = 23 in under 1 µs. Helios [43] demonstrates an impressive
implementation of the Union-Find decoder [18] on an FPGA and
achieves latencies of 11.5 ns for one round of a 𝑑 = 21 surface code
under a simpler phenomenological error model. Although all of
these works improve decoding latencies, the advent of parallel win-
dow decoders presents a scalable “outer level” solution to real-time
decoding that removes 1 µs as a hard requirement for decoding
latency. Relaxing the constraints on the inner decoder also allows
decoders which historically have had prohibitive latencies, such
as higher-accuracy decoders [7, 54, 61] and decoders for qLDPC
codes [46].

Prior work specifically addressing parallel window decoders
is still limited. The original proposals for parallel window decod-
ing [55, 56], work analyzing their performance for spatial windows
during lattice surgery [41], and work extending this to transversal
gate computation for high-connectivity systems [66] all assume
that windows with dependencies wait until their dependencies are
completely decoded. SWIPER, however, proposes key differences.
Our novel introduction of a speculation step allows us to reduce
the reaction time of T gates and in turn fault-tolerant program
runtimes by 40%. We are also the first work to simulate general
lattice surgery programs in the context of window decoding.

7 Conclusion and Future Work
In this work, we proposed SWIPER, a parallel window decoder that
introduces a light-weight speculation step to resolve data depen-
dencies between adajcent surface code decoding windows. There
are a number of interesting directions for future work to explore.
While in this work we design an independent predictor, exploring
whether iterative decoding algorithms [34, 64] could admit a high-
quality prediction from an intermediate state could further reduce
classical resources. Additionally, SWIPER focuses on surface codes,
but parallel window decoding is also compatible with a broader set
of codes, including qLDPC codes [55]. Designing a predictor in this
setting could further extend the benefits of SWIPER.

Author contributions
J.V. conceived of the idea, designed the 3-step predictor, designed
the aligned scheduling strategy, and wrote the compilation pipeline.
J.D.C. developed SWIPER-SIM and ran benchmark simulations. S.J.
performed FPGA evaluations of the predictor. G.S.R., Y.L., and F.T.C.
advised the project. All authors revised the manuscript.

Acknowledgments
We thank Pranav Gokhale, Kevin Gui, and Tina Oberoi for feedback
on an earlier version of this work.

This work is funded in part by EPiQC, an NSF Expedition in
Computing, under award CCF-1730449; in part by STAQ under
award NSF Phy-1818914/232580; in part by NSF award 2340516;
in part by the US Department of Energy Office of Advanced Sci-
entific Computing Research, Accelerated Research for Quantum
Computing Program; and in part by the NSF Quantum Leap Chal-
lenge Institute for Hybrid Quantum Architectures and Networks
(NSF Award 2016136), in part based upon work supported by the
U.S. Department of Energy, Office of Science, National Quantum
Information Science Research Centers, and in part by the Army
Research Office under Grant Number W911NF-23-1-0077. This ma-
terial is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Comput-
ing Research, Accelerated Research in Quantum Computing under
Award Number DE-SC0025633. This work was completed in part
with resources provided by the University of Chicago’s Research
Computing Center. The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the
U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding
any copyright notation herein. FTC is the Chief Scientist for Quan-
tum Software at Infleqtion and an advisor to Quantum Circuits,
Inc.

References
[1] Google Quantum AI. 2023. Suppressing quantum errors by scaling a surface code

logical qubit. Nature 614, 7949 (2023), 676–681.
[2] Google Quantum AI and Collaborators. 2024. Quantum error correction below

the surface code threshold. arXiv preprint arXiv:2408.13687 (2024).
[3] Narges Alavisamani, Suhas Vittal, Ramin Ayanzadeh, Poulami Das, and Moin-

uddin Qureshi. 2024. Promatch: Extending the Reach of Real-Time Quantum
Error Correction with Adaptive Predecoding. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3. 818–833.

[4] AMD. 2024. AMD Vivado™ Design Suite. https://www.amd.com/en/products/
software/adaptive-socs-and-fpgas/vivado.html

[5] Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean,
Alexandru Paler, Austin Fowler, and Hartmut Neven. 2018. Encoding electronic
spectra in quantum circuits with linear T complexity. Physical Review X 8, 4
(2018), 041015.

[6] Ben Barber, Kenton M Barnes, Tomasz Bialas, Okan Buğdaycı, Earl T Campbell,
Neil I Gillespie, Kauser Johar, Ram Rajan, Adam W Richardson, Luka Skoric,
Canberk Topal, Mark L Turner, and Abbas B Ziad. 2023. A real-time, scalable, fast
and highly resource efficient decoder for a quantum computer. arXiv preprint
arXiv:2309.05558 (2023).

[7] Johannes Bausch, Andrew W Senior, Francisco JH Heras, Thomas Edlich, Alex
Davies, Michael Newman, Cody Jones, Kevin Satzinger, Murphy Yuezhen Niu,
Sam Blackwell, George Holland, Dvir Kafri, Juan Atalaya, Craig Gidney, Demis
Hassabis, Sergio Boixo, Hartmut Neve, and Pushmeet Kohli. 2023. Learning to
decode the surface code with a recurrent, transformer-based neural network.
arXiv preprint arXiv:2310.05900 (2023).

[8] Michael Beverland, Vadym Kliuchnikov, and Eddie Schoute. 2022. Surface code
compilation via edge-disjoint paths. PRX Quantum 3, 2 (2022), 020342.

[9] Michael E Beverland, Prakash Murali, Matthias Troyer, Krysta M Svore, Torsten
Hoefler, Vadym Kliuchnikov, Guang Hao Low, Mathias Soeken, Aarthi Sundaram,
and Alexander Vaschillo. 2022. Assessing requirements to scale to practical
quantum advantage. arXiv preprint arXiv:2211.07629 (2022).

[10] Sergey Bravyi and Alexei Kitaev. 2005. Universal quantum computation with
ideal Clifford gates and noisy ancillas. Physical Review A—Atomic, Molecular, and
Optical Physics 71, 2 (2005), 022316.

[11] Ilkwon Byun, Junpyo Kim, Dongmoon Min, Ikki Nagaoka, Kosuke Fukumitsu,
Iori Ishikawa, Teruo Tanimoto, Masamitsu Tanaka, Koji Inoue, and Jangwoo Kim.

1398

https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html

ISCA ’25, June 21–25, 2025, Tokyo, Japan Joshua Viszlai, Jason D. Chadwick, Sarang Joshi, Gokul Subramanian Ravi, Yanjing Li, and Frederic T. Chong

2022. XQsim: modeling cross-technology control processors for 10+ K qubit
quantum computers. In Proceedings of the 49th Annual International Symposium
on Computer Architecture. 366–382.

[12] Christopher Chamberland, Pavithran Iyer, and David Poulin. 2018. Fault-tolerant
quantum computing in the Pauli or Clifford frame with slow error diagnostics.
Quantum 2 (2018), 43.

[13] Christopher T Chubb and Steven T Flammia. 2021. Statistical mechanical models
for quantum codes with correlated noise. Annales de l’Institut Henri Poincaré D 8,
2 (2021), 269–321.

[14] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S
Bishop, Steven Heidel, Colm A Ryan, Prasahnt Sivarajah, John Smolin, Jay M
Gambetta, and Blake R Johnson. 2022. OpenQASM 3: A broader and deeper
quantum assembly language. ACM Transactions on Quantum Computing 3, 3
(2022), 1–50.

[15] Poulami Das, Aditya Locharla, and Cody Jones. 2022. Lilliput: a lightweight
low-latency lookup-table decoder for near-term quantum error correction. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 541–553.

[16] Poulami Das, Christopher A Pattison, Srilatha Manne, Douglas Carmean, Krysta
Svore, Moinuddin Qureshi, and Nicolas Delfosse. 2020. A scalable decoder
micro-architecture for fault-tolerant quantum computing. arXiv preprint
arXiv:2001.06598 (2020).

[17] Poulami Das, Christopher A Pattison, Srilatha Manne, Douglas M Carmean,
Krysta M Svore, Moinuddin Qureshi, and Nicolas Delfosse. 2022. Afs: Accu-
rate, fast, and scalable error-decoding for fault-tolerant quantum computers. In
2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 259–273.

[18] Nicolas Delfosse and Naomi H Nickerson. 2021. Almost-linear time decoding
algorithm for topological codes. Quantum 5 (2021), 595.

[19] Nicolas Delfosse and Gilles Zémor. 2020. Linear-time maximum likelihood
decoding of surface codes over the quantum erasure channel. Physical Review
Research 2, 3 (2020), 033042.

[20] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. 2002. Topological
quantum memory. J. Math. Phys. 43, 9 (2002), 4452–4505.

[21] Cirq Developers. 2024. Cirq. https://doi.org/10.5281/zenodo.11398048
[22] Yongshan Ding and Frederic T Chong. 2020. Quantum computer systems: Re-

search for noisy intermediate-scale quantum computers. Synthesis lectures on
computer architecture 15, 2 (2020), 1–227.

[23] David P DiVincenzo and Panos Aliferis. 2007. Effective fault-tolerant quantum
computation with slowmeasurements. Physical review letters 98, 2 (2007), 020501.

[24] Austin G Fowler and Craig Gidney. 2018. Low overhead quantum computation
using lattice surgery. arXiv preprint arXiv:1808.06709 (2018).

[25] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. Physical
Review A—Atomic, Molecular, and Optical Physics 86, 3 (2012), 032324.

[26] Austin G Fowler, Adam C Whiteside, and Lloyd CL Hollenberg. 2012. Towards
practical classical processing for the surface code. Physical review letters 108, 18
(2012), 180501.

[27] Craig Gidney. 2021. Stim: a fast stabilizer circuit simulator. Quantum 5 (2021),
497.

[28] Craig Gidney. 2024. Inplace access to the surface code y basis. Quantum 8 (2024),
1310.

[29] Craig Gidney and Martin Ekerå. 2021. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. Quantum 5 (2021), 433.

[30] Daniel Gottesman. 1997. Stabilizer codes and quantum error correction. California
Institute of Technology.

[31] Matthew P Harrigan, Tanuj Khattar, Charles Yuan, Anurudh Peduri, Noureldin
Yosri, FionnDMalone, Ryan Babbush, andNicholas C Rubin. 2024. Expressing and
Analyzing Quantum Algorithms with Qualtran. arXiv preprint arXiv:2409.04643
(2024).

[32] Yoshihito Hashimoto, Shinichi Yorozu, Toshiyuki Miyazaki, Yoshio Kameda,
Hideo Suzuki, and Nobuyuki Yoshikawa. 2007. Implementation and experimental
evaluation of a cryocooled system prototype for high-throughput SFQ digital
applications. IEEE transactions on applied superconductivity 17, 2 (2007), 546–551.

[33] Oscar Higgott. 2022. Pymatching: A python package for decoding quantum
codes with minimum-weight perfect matching. ACM Transactions on Quantum
Computing 3, 3 (2022), 1–16.

[34] Oscar Higgott and Craig Gidney. 2023. Sparse blossom: correcting a million errors
per core second with minimum-weight matching. arXiv preprint arXiv:2303.15933
(2023).

[35] Adam Holmes, Mohammad Reza Jokar, Ghasem Pasandi, Yongshan Ding, Mas-
soud Pedram, and Frederic T. Chong. 2020. NISQ+: Boosting quantum computing
power by approximating quantum error correction. arXiv:2004.04794 [quant-ph]
https://arxiv.org/abs/2004.04794

[36] Dominic Horsman, Austin G Fowler, Simon Devitt, and Rodney Van Meter. 2012.
Surface code quantum computing by lattice surgery. New Journal of Physics 14,
12 (2012), 123011.

[37] Emanuel Knill. 2007. Quantum computing with very noisy devices. arXiv preprint
quant-ph/0410199 (2007).

[38] Sebastian Krinner, Simon Storz, Philipp Kurpiers, Paul Magnard, Johannes Hein-
soo, Raphael Keller, Janis Luetolf, Christopher Eichler, and Andreas Wallraff.
2019. Engineering cryogenic setups for 100-qubit scale superconducting circuit
systems. EPJ Quantum Technology 6, 1 (2019), 2.

[39] Tyler LeBlond, Christopher Dean, George Watkins, and Ryan Bennink. 2024.
Realistic Cost to Execute Practical Quantum Circuits using Direct Clifford+ T
Lattice Surgery Compilation. ACM Transactions on Quantum Computing 5, 4
(2024), 1–28.

[40] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. 2023. Qasmbench:
A low-level quantum benchmark suite for nisq evaluation and simulation. ACM
Transactions on Quantum Computing 4, 2 (2023), 1–26.

[41] Sophia Fuhui Lin, Eric C Peterson, Krishanu Sankar, and Prasahnt Sivarajah. 2025.
Spatially parallel decoding for multi-qubit lattice surgery. Quantum Science and
Technology 10, 3 (2025), 035007.

[42] Daniel Litinski. 2019. A game of surface codes: Large-scale quantum computing
with lattice surgery. Quantum 3 (2019), 128.

[43] Namitha Liyanage, Yue Wu, Alexander Deters, and Lin Zhong. 2023. Scalable
quantum error correction for surface codes using FPGA. In 2023 IEEE International
Conference on Quantum Computing and Engineering (QCE), Vol. 1. IEEE, 916–927.

[44] Satvik Maurya and Swamit Tannu. 2024. Managing Classical Processing Require-
ments for Quantum Error Correction. arXiv preprint arXiv:2406.17995 (2024).

[45] Michael A Nielsen and Isaac L Chuang. 2001. Quantum computation and quantum
information. Phys. Today 54, 2 (2001), 60.

[46] Pavel Panteleev and Gleb Kalachev. 2021. Degenerate quantum LDPC codes with
good finite length performance. Quantum 5 (2021), 585.

[47] Nils Quetschlich, Lukas Burgholzer, and Robert Wille. 2023. MQT Bench: Bench-
marking Software and Design Automation Tools for Quantum Computing. Quan-
tum (2023). MQT Bench is available at https://www.cda.cit.tum.de/mqtbench/.

[48] Gokul Subramanian Ravi, Jonathan M Baker, Arash Fayyazi, Sophia Fuhui Lin,
Ali Javadi-Abhari, Massoud Pedram, and Frederic T Chong. 2023. Better than
worst-case decoding for quantum error correction. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2. 88–102.

[49] Ben W Reichardt. 2004. Improved magic states distillation for quantum univer-
sality. arXiv preprint quant-ph/0411036 (2004).

[50] Eleanor G Rieffel and Wolfgang H Polak. 2011. Quantum computing: A gentle
introduction. MIT Press.

[51] Leon Riesebos, Xiang Fu, Savvas Varsamopoulos, Carmen GAlmudever, and Koen
Bertels. 2017. Pauli frames for quantum computer architectures. In Proceedings
of the 54th Annual Design Automation Conference 2017. 1–6.

[52] Neil J Ross and Peter Selinger. 2016. Optimal ancilla-free Clifford+ T approxima-
tion of z-rotations. Quantum Inf. Comput. 16, 11&12 (2016), 901–953.

[53] rroodll, jbelarge, elenewski, and zmorrell. 2024. isi-usc-edu/pyLIQTR: Release 1.1.1.
https://doi.org/10.5281/zenodo.10913397

[54] Noah Shutty, Michael Newman, and Benjamin Villalonga. 2024. Efficient near-
optimal decoding of the surface code through ensembling. arXiv preprint
arXiv:2401.12434 (2024).

[55] Luka Skoric, Dan E Browne, Kenton M Barnes, Neil I Gillespie, and Earl T Camp-
bell. 2023. Parallel window decoding enables scalable fault tolerant quantum
computation. Nature Communications 14, 1 (2023), 7040.

[56] Xinyu Tan, Fang Zhang, Rui Chao, Yaoyun Shi, and Jianxin Chen. 2023. Scalable
surface-code decoders with parallelization in time. PRX Quantum 4, 4 (2023),
040344.

[57] Swamit S Tannu, Zachary A Myers, Prashant J Nair, Douglas M Carmean, and
Moinuddin K Qureshi. 2017. Taming the instruction bandwidth of quantum
computers via hardware-managed error correction. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture. 679–691.

[58] Barbara M Terhal. 2015. Quantum error correction for quantum memories.
Reviews of Modern Physics 87, 2 (2015), 307–346.

[59] Yosuke Ueno, Masaaki Kondo, Masamitsu Tanaka, Yasunari Suzuki, and Yutaka
Tabuchi. 2021. QECOOL: On-line quantum error correction with a supercon-
ducting decoder for surface code. In 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, 451–456.

[60] Yosuke Ueno, Yuna Tomida, Teruo Tanimoto, Masamitsu Tanaka, Yutaka Tabuchi,
Koji Inoue, andHiroshi Nakamura. 2023. Inter-Temperature Bandwidth Reduction
in Cryogenic QAOA Machines. IEEE Computer Architecture Letters (2023).

[61] Savvas Varsamopoulos, Koen Bertels, and Carmen Garcia Almudever. 2019. Com-
paring neural network based decoders for the surface code. IEEE Trans. Comput.
69, 2 (2019), 300–311.

[62] Suhas Vittal, Poulami Das, and Moinuddin Qureshi. 2023. Astrea: Accurate
quantum error-decoding via practical minimum-weight perfect-matching. In
Proceedings of the 50th Annual International Symposium on Computer Architecture.
1–16.

[63] Yue Wu, Namitha Liyanage, and Lin Zhong. 2025. Micro Blossom: Accelerated
Minimum-Weight Perfect Matching Decoding for Quantum Error Correction.
arXiv preprint arXiv:2502.14787 (2025).

1399

https://doi.org/10.5281/zenodo.11398048
https://arxiv.org/abs/2004.04794
https://arxiv.org/abs/2004.04794
https://www.cda.cit.tum.de/mqtbench/
https://doi.org/10.5281/zenodo.10913397

SWIPER: Minimizing Fault-Tolerant Quantum Program Latency via Speculative Window Decoding ISCA ’25, June 21–25, 2025, Tokyo, Japan

[64] Yue Wu and Lin Zhong. 2023. Fusion blossom: Fast mwpm decoders for qec.
In 2023 IEEE International Conference on Quantum Computing and Engineering
(QCE), Vol. 1. IEEE, 928–938.

[65] Amir Youssefi, Itay Shomroni, Yash J Joshi, Nathan R Bernier, Anton Lukashchuk,
Philipp Uhrich, Liu Qiu, and Tobias J Kippenberg. 2021. A cryogenic electro-optic
interconnect for superconducting devices. Nature Electronics 4, 5 (2021), 326–332.

[66] Jiaxuan Zhang, Zhao-Yun Chen, Jia-Ning Li, Tian-Hao Wei, Huan-Yu Liu, Xi-
Ning Zhuang, Qing-Song Li, Yu-Chun Wu, and Guo-Ping Guo. 2024. Integrating
Window-Based Correlated Decoding with Constant-Time Logical Gates for Large-
Scale Quantum Computation. arXiv preprint arXiv:2410.16963 (2024).

A Artifact Appendix
A.1 Abstract
The artifact includes the source code, data, and scripts necessary
to reproduce the results in this paper. Additionally, it contains our
introduced tool, SWIPER-SIM, a simulator for window decoding of
general lattice surgery programs.

A.2 Artifact check-list (meta-information)
• Run-time environment: Python3.10+, slurm.
• Hardware: HPC cluster for benchmark evaluations; PC for other
experiments.

• Metrics: Prediction accuracy, T gate reaction time, program run-
time.

• Output: SWIPER-SIM lattice surgery program traces.
• Experiments: Sampling decoder latencies, evaluating predictor
accuracy, evaluating misprediction recovery strategies, evaluating
T gate reaction time, evaluating benchmark program runtime and
classical decoding cost.

• How much disk space required (approximately)?: 10GB.
• How much time is needed to prepare workflow (approxi-
mately)?: 10 minutes.

• How much time is needed to complete experiments (approxi-
mately)?: Varies based on experiment. Largest benchmark simula-
tions take several days to complete on an HPC cluster, but all other
data generation can be run in under one hour locally.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT.
• Archived (provide DOI)?: doi: 10.5281/zenodo.15102954

A.3 Description
A.3.1 How to access. The most up-to-date version of the code can
be accessed by cloning the repository from Github, or the archived
artifact version can be accessed by downloading and unzipping the
Zenodo archive.

A.3.2 Hardware dependencies. A modern PC for running most ex-
periments, and anHPC cluster with SLURM for running all SWIPER-
SIM benchmark evaluations.

A.3.3 Software dependencies.

(1) git
(2) Python 3.10 or 3.11.
(3) CMake and gcc (verified to work with versions 3.31.6 and

9.2.0, respectively)

If you run into issues when building and installing the
tweedledum package, note that this depends on some C++ libraries
that may need to be manually reinstalled if the version on your PC
is too old.

A.4 Installation
From the repository root, use pip to install dependencies:

pip install -r requirements.txt

A.5 Experiment workflow
The data generated for this publication is provided in ‘artifact/data/’.
Each of the results can be reproduced using the following Python
scripts (note that two require a SLURM cluster). The final script,
artifact/run_analysis.py, generates the figures based on the
(original or new) data in ‘artifact/data/’.

• artifact/run_pymatching_latencies.py: Evaluates la-
tency of Pymatching on random decoding problems for dif-
ferent code distances and decoding volumes. Relevant for
Fig. 3, and as an input to SWIPER-SIM. Expected runtime:
about 1 hour.

• artifact/run_predictor_accuracy.py: Simulates 1-, 2-,
and 3-step predictor accuracy for different code distances.
Relevant for Fig. 4. Expected runtime: about 1 hour.

• artifact/run_mispredict_strategy.py: Simulates dif-
ferent strategies for recovering from mispredictions. Rel-
evant for Fig. 8. Expected runtime: about 5 minutes.

• artifact/run_reaction_time_evals.py: Runs 300
SWIPER-SIM slurm jobs to evaluate SWIPER on a simple
"random-T" schedule with different decoder latencies.
Relevant for Fig. 12. Expected runtime: one minute to
submit jobs, and several hours for SLURM jobs to complete
(assuming sufficient parallelization).

• artifact/run_benchmark_evals.py: Runs 3000 SWIPER-
SIM slurm jobs to evaluate SWIPER on various application
benchmarks. Relevant for Figs. 14 and 15. Expected runtime:
one minute to several hours to submit jobs (depending on
configured delay between submitting sets of jobs; this can
be configured), and up to several days for all SLURM jobs to
complete.

• artifact/run_analysis.py: Generates all data-related
figures that appear in the paper. This involves reading
pre-generated data from ‘artifact/data‘, as well as perform-
ing some simpler simulations/calculations within the script.
Expected runtime: 5 minutes.

A.6 Evaluation and expected results
Figures 3, 4, 7, 8b, 9, 10, 11a-b, 12a-c, 14a-c, and 15a-b can be re-
produced using this code. Additionally, the minimum, geomean,
and maximum speedups achieved with SWIPER on the benchmark
programs can be calculated. The results from the various data gen-
eration scripts are stored in ‘artifact/data/’. The generated figures
are stored in ‘artifact/figures/’, and are named according to their
number in the paper.

A.7 Experiment customization
The experiments are fully configurable by directly editing the
Python scripts. In particular, the SLURM submission scripts can be
edited to include other benchmarks, to evaluate at different code
distances, to use different speculation accuracies or decoder latency
distributions, etc. Note that the compiled benchmark programs and

1400

https://github.com/jviszlai/swiper
https://zenodo.org/records/15338731

ISCA ’25, June 21–25, 2025, Tokyo, Japan Joshua Viszlai, Jason D. Chadwick, Sarang Joshi, Gokul Subramanian Ravi, Yanjing Li, and Frederic T. Chong

decoder latency distribution are loaded from files, so those files must first be updated (using other scripts in the ‘artifact/’ directory)
to customize the experiment.

1401

	Abstract
	1 Introduction
	2 Background
	2.1 Surface Codes
	2.2 Quantum Error Correction Decoding
	2.3 Blocking Operations
	2.4 Decoding Windows
	2.5 Sliding Window Approach
	2.6 Parallel Window Approach

	3 Motivation
	3.1 Decoding Latency
	3.2 Reaction Time
	3.3 Key Definitions

	4 SWIPER: Speculative Window Decoding
	4.1 T Gate Teleportation
	4.2 Predictor Design
	4.3 Classical Resources
	4.4 System Overview

	5 Methodology
	5.1 Simulation Software
	5.2 Studying reaction times with SWIPER
	5.3 Benchmark Simulation

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization

