Jason Chadwick
Jason D. Chadwick
Quantum computing Ph.D. student
University of Chicago
jchadwick@uchicago.edu

CV
Github
Google Scholar
arXiv
LinkedIn
ORCiD

Figure 1. Relative explained variance of principal components for the NSTX-U training data. We use principal component analysis (PCA) to reduce the dimensionality of the density and pressure profiles. In this work, modes with an explained variance ratio greater than $10^{-3}$ are kept. This leads to keeping 7 modes for the pressure profile shape and 9 for the density profile shape.