Jason Chadwick
Jason D. Chadwick
Quantum computing Ph.D. student
University of Chicago

Google Scholar

Figure 2. Interleaved Randomized Benchmarking for an optimal control $H \otimes H$ pulse on a superconducting transmon ququart following our qubit encoding. We use two-qubit Clifford sequences of gate depth up to 100 and average each data point over 10 samples. Error bars show the standard deviation of the mean but they are smaller than the mean markers. Red: Standard two-qubit Randomized Benchmarking to estimate the average Clifford gate fidelity to be $F_\mathrm{RB} \approx 95.8\%$. Blue: Interleaving the $H \otimes H$ pulse between the RB Cliffords yields a combined per-operation fidelity of $F_\mathrm{IRB} \approx 92.1\%$, resulting in an $H \otimes H$ fidelity $F_{H H} \approx 96.0\%$.